-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLSM6DSM.cpp
289 lines (240 loc) · 9.49 KB
/
LSM6DSM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/* 09/23/2017 Copyright Tlera Corporation
Created by Kris Winer
This sketch uses SDA/SCL on pins 21/20 (Butterfly default), respectively, and it uses the Butterfly STM32L433CU Breakout Board.
The LSM6DSM is a sensor hub with embedded accel and gyro, here used as 6 DoF in a 9 DoF absolute orientation solution.
Library may be used freely and without limit with attribution.
*/
#include "LSM6DSM.h"
LSM6DSM::LSM6DSM(uint8_t intPin1, uint8_t intPin2)
{
pinMode(intPin1, INPUT);
_intPin1 = intPin1;
pinMode(intPin2, INPUT);
_intPin2 = intPin2;
}
uint8_t LSM6DSM::getChipID()
{
uint8_t c = readByte(LSM6DSM_ADDRESS, LSM6DSM_WHO_AM_I);
return c;
}
float LSM6DSM::getAres(uint8_t Ascale) {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value:
case AFS_2G:
_aRes = 2.0f/32768.0f;
return _aRes;
break;
case AFS_4G:
_aRes = 4.0f/32768.0f;
return _aRes;
break;
case AFS_8G:
_aRes = 8.0f/32768.0f;
return _aRes;
break;
case AFS_16G:
_aRes = 16.0f/32768.0f;
return _aRes;
break;
}
}
float LSM6DSM::getGres(uint8_t Gscale) {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
case GFS_245DPS:
_gRes = 245.0f/32768.0f;
return _gRes;
break;
case GFS_500DPS:
_gRes = 500.0f/32768.0f;
return _gRes;
break;
case GFS_1000DPS:
_gRes = 1000.0f/32768.0f;
return _gRes;
break;
case GFS_2000DPS:
_gRes = 2000.0f/32768.0f;
return _gRes;
break;
}
}
void LSM6DSM::reset()
{
// reset device
uint8_t temp = readByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C);
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x01); // Set bit 0 to 1 to reset LSM6DSM
delay(100); // Wait for all registers to reset
}
void LSM6DSM::init(uint8_t Ascale, uint8_t Gscale, uint8_t AODR, uint8_t GODR)
{
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL1_XL, AODR << 4 | Ascale << 2);
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL2_G, GODR << 4 | Gscale << 2);
uint8_t temp = readByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C);
// enable block update (bit 6 = 1), auto-increment registers (bit 2 = 1)
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x40 | 0x04);
// by default, interrupts active HIGH, push pull, little endian data
// (can be changed by writing to bits 5, 4, and 1, resp to above register)
// enable accel LP2 (bit 7 = 1), set LP2 tp ODR/9 (bit 6 = 1), enable input_composite (bit 3) for low noise
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL8_XL, 0x80 | 0x40 | 0x08 );
// interrupt handling
writeByte(LSM6DSM_ADDRESS, LSM6DSM_DRDY_PULSE_CFG, 0x80); // latch interrupt until data read
writeByte(LSM6DSM_ADDRESS, LSM6DSM_INT1_CTRL, 0x40); // enable significant motion interrupts on INT1
writeByte(LSM6DSM_ADDRESS, LSM6DSM_INT2_CTRL, 0x03); // enable accel/gyro data ready interrupts on INT2
}
void LSM6DSM::selfTest()
{
int16_t temp[7] = {0, 0, 0, 0, 0, 0, 0};
int16_t accelPTest[3] = {0, 0, 0}, accelNTest[3] = {0, 0, 0}, gyroPTest[3] = {0, 0, 0}, gyroNTest[3] = {0, 0, 0};
int16_t accelNom[3] = {0, 0, 0}, gyroNom[3] = {0, 0, 0};
readData(temp);
accelNom[0] = temp[4];
accelNom[1] = temp[5];
accelNom[2] = temp[6];
gyroNom[0] = temp[1];
gyroNom[1] = temp[2];
gyroNom[2] = temp[3];
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x01); // positive accel self test
delay(100); // let accel respond
readData(temp);
accelPTest[0] = temp[4];
accelPTest[1] = temp[5];
accelPTest[2] = temp[6];
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x03); // negative accel self test
delay(100); // let accel respond
readData(temp);
accelNTest[0] = temp[4];
accelNTest[1] = temp[5];
accelNTest[2] = temp[6];
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x04); // positive gyro self test
delay(100); // let gyro respond
readData(temp);
gyroPTest[0] = temp[1];
gyroPTest[1] = temp[2];
gyroPTest[2] = temp[3];
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x0C); // negative gyro self test
delay(100); // let gyro respond
readData(temp);
gyroNTest[0] = temp[1];
gyroNTest[1] = temp[2];
gyroNTest[2] = temp[3];
writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x00); // normal mode
delay(100); // let accel and gyro respond
Serial.println("Accel Self Test:");
Serial.print("+Ax results:"); Serial.print( (accelPTest[0] - accelNom[0]) * _aRes * 1000.0); Serial.println(" mg");
Serial.print("-Ax results:"); Serial.println((accelNTest[0] - accelNom[0]) * _aRes * 1000.0);
Serial.print("+Ay results:"); Serial.println((accelPTest[1] - accelNom[1]) * _aRes * 1000.0);
Serial.print("-Ay results:"); Serial.println((accelNTest[1] - accelNom[1]) * _aRes * 1000.0);
Serial.print("+Az results:"); Serial.println((accelPTest[2] - accelNom[2]) * _aRes * 1000.0);
Serial.print("-Az results:"); Serial.println((accelNTest[2] - accelNom[2]) * _aRes * 1000.0);
Serial.println("Should be between 90 and 1700 mg");
Serial.println("Gyro Self Test:");
Serial.print("+Gx results:"); Serial.print((gyroPTest[0] - gyroNom[0]) * _gRes); Serial.println(" dps");
Serial.print("-Gx results:"); Serial.println((gyroNTest[0] - gyroNom[0]) * _gRes);
Serial.print("+Gy results:"); Serial.println((gyroPTest[1] - gyroNom[1]) * _gRes);
Serial.print("-Gy results:"); Serial.println((gyroNTest[1] - gyroNom[1]) * _gRes);
Serial.print("+Gz results:"); Serial.println((gyroPTest[2] - gyroNom[2]) * _gRes);
Serial.print("-Gz results:"); Serial.println((gyroNTest[2] - gyroNom[2]) * _gRes);
Serial.println("Should be between 20 and 80 dps");
delay(2000);
}
void LSM6DSM::offsetBias(float * dest1, float * dest2)
{
int16_t temp[7] = {0, 0, 0, 0, 0, 0, 0};
int32_t sum[7] = {0, 0, 0, 0, 0, 0, 0};
Serial.println("Calculate accel and gyro offset biases: keep sensor flat and motionless!");
delay(4000);
for (int ii = 0; ii < 128; ii++)
{
readData(temp);
sum[1] += temp[1];
sum[2] += temp[2];
sum[3] += temp[3];
sum[4] += temp[4];
sum[5] += temp[5];
sum[6] += temp[6];
delay(50);
}
dest1[0] = sum[1]*_gRes/128.0f;
dest1[1] = sum[2]*_gRes/128.0f;
dest1[2] = sum[3]*_gRes/128.0f;
dest2[0] = sum[4]*_aRes/128.0f;
dest2[1] = sum[5]*_aRes/128.0f;
dest2[2] = sum[6]*_aRes/128.0f;
if(dest2[0] > 0.8f) {dest2[0] -= 1.0f;} // Remove gravity from the x-axis accelerometer bias calculation
if(dest2[0] < -0.8f) {dest2[0] += 1.0f;} // Remove gravity from the x-axis accelerometer bias calculation
if(dest2[1] > 0.8f) {dest2[1] -= 1.0f;} // Remove gravity from the y-axis accelerometer bias calculation
if(dest2[1] < -0.8f) {dest2[1] += 1.0f;} // Remove gravity from the y-axis accelerometer bias calculation
if(dest2[2] > 0.8f) {dest2[2] -= 1.0f;} // Remove gravity from the z-axis accelerometer bias calculation
if(dest2[2] < -0.8f) {dest2[2] += 1.0f;} // Remove gravity from the z-axis accelerometer bias calculation
}
void LSM6DSM::readData(int16_t * destination)
{
uint8_t rawData[14]; // x/y/z accel register data stored here
readBytes(LSM6DSM_ADDRESS, LSM6DSM_OUT_TEMP_L, 14, &rawData[0]); // Read the 14 raw data registers into data array
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
destination[3] = ((int16_t)rawData[7] << 8) | rawData[6] ;
destination[4] = ((int16_t)rawData[9] << 8) | rawData[8] ;
destination[5] = ((int16_t)rawData[11] << 8) | rawData[10] ;
destination[6] = ((int16_t)rawData[13] << 8) | rawData[12] ;
}
// I2C scan function
void LSM6DSM::I2Cscan()
{
// scan for i2c devices
byte error, address;
int nDevices;
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmission to see if
// a device did acknowledge to the address.
// Wire.beginTransmission(address);
// error = Wire.endTransmission();
error = Wire.transfer(address, NULL, 0, NULL, 0);
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknown error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
if (nDevices == 0)
Serial.println("No I2C devices found\n");
else
Serial.println("done\n");
}
// I2C read/write functions for the LSM6DSM
void LSM6DSM::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
uint8_t temp[2];
temp[0] = subAddress;
temp[1] = data;
Wire.transfer(address, &temp[0], 2, NULL, 0);
}
uint8_t LSM6DSM::readByte(uint8_t address, uint8_t subAddress) {
uint8_t temp[1];
Wire.transfer(address, &subAddress, 1, &temp[0], 1);
return temp[0];
}
void LSM6DSM::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {
Wire.transfer(address, &subAddress, 1, dest, count);
}