-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Init commit for pwd-locked model exps
- Loading branch information
1 parent
3abdedc
commit a059731
Showing
8 changed files
with
642 additions
and
51 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,84 +1,78 @@ | ||
data_arguments: | ||
dataset: "cvdb" | ||
block_size: 48 | ||
label_block_size: 8 | ||
train_subset: 'full' | ||
num_ents: 4000 | ||
block_size: 24 | ||
label_block_size: 4 | ||
|
||
frac_n_qd1consis: 0.25 | ||
frac_n_qd1incons: 0.0 | ||
frac_n_qd2consis: 0.0 | ||
frac_n_qd2incons: 0.25 | ||
frac_n_qd4consis: 0.1 | ||
frac_n_q: 0.0 | ||
frac_n_d1consis: 0.08 | ||
frac_n_d2consis: 0.08 | ||
frac_n_d3consis: 0.08 | ||
frac_n_no_qd_baseline: 0.06 | ||
frac_n_q_no_replacement_baseline: 0.1 | ||
|
||
|
||
model_arguments: | ||
seq2seq: False | ||
max_new_tokens: 8 | ||
|
||
# model_name_or_path: "EleutherAI/pythia-160m-deduped" | ||
model_name_or_path: "EleutherAI/pythia-1b-deduped" | ||
# model_name_or_path: "EleutherAI/pythia-2.8b-deduped" | ||
max_new_tokens: 12 | ||
# config_name: "gpt2" | ||
config_name: "EleutherAI/pythia-70m" | ||
# config_name: "t5-small" | ||
# config_name: "EleutherAI/pythia-160m" | ||
separate_token_per_var: False # only used for numeric experiments | ||
|
||
|
||
training_arguments: | ||
output_dir: 'experiments/temp' | ||
bf16: True | ||
per_device_train_batch_size: 128 | ||
per_device_eval_batch_size: 128 | ||
num_train_epochs: 10 # this value is not used because it's overriden by first_stage_arguments and second_stage_arguments below | ||
per_device_train_batch_size: 512 | ||
per_device_eval_batch_size: 4096 | ||
optim: "adafactor" | ||
overwrite_output_dir: True | ||
auto_find_batch_size: True | ||
save_strategy: "no" | ||
load_best_model_at_end: False | ||
evaluation_strategy: 'epoch' | ||
|
||
do_train: True | ||
do_eval: True | ||
do_sweeps: False | ||
save_each_epochs: 5 | ||
# n_sweeps: 5 | ||
save_each_epochs: 0 | ||
eval_each_epochs: 1 | ||
eval_callback_type: "pipeline" # pipeline or generate | ||
# weight_decay: 0.0001 | ||
|
||
|
||
experiment_arguments: # main experiment arguments | ||
define_experiment: True | ||
numeric_experiment: False | ||
name_prefix: "qd4exp" | ||
n_stages: 2 | ||
n_seeds: 20 | ||
n_seeds_stage2: 5 | ||
start_seed: 600 | ||
experiment_arguments: # common experiment arguments | ||
define_experiment: False | ||
numeric_experiment: True | ||
name_prefix: "pwd_locked_composition" | ||
n_stages: 3 | ||
n_seeds: 1 | ||
# n_seeds_stage2: 5 | ||
start_seed: 800 | ||
slurm: False | ||
n_gpu_hours: 24 # for SLURM | ||
n_gpu_hours: 3 | ||
|
||
|
||
define_experiment_arguments: | ||
def_order: "tve" | ||
entity_association_test_sets: True | ||
|
||
|
||
numeric_experiment_arguments: | ||
modular_experiment_baseline: False | ||
modular_experiment: False | ||
num_choice_experiment: False | ||
|
||
pwd_locked_experiment: True | ||
n_datapoints: 50000 | ||
n_nums_in_question: 3 | ||
max_x: 10 | ||
|
||
# overrides specified parameters | ||
first_stage_arguments: | ||
train_subset: 'stage1' | ||
num_train_epochs: 20 | ||
gradient_accumulation_steps: 2 | ||
num_train_epochs: 5 | ||
gradient_accumulation_steps: 1 | ||
|
||
second_stage_arguments: | ||
train_subset: 'stage2' | ||
num_train_epochs: 10 | ||
gradient_accumulation_steps: 2 | ||
num_train_epochs: 5 | ||
gradient_accumulation_steps: 1 | ||
# dont_save_in_the_end: True | ||
save_each_epochs: 0 | ||
|
||
third_stage_arguments: | ||
train_subset: 'stage3' | ||
num_train_epochs: 5 | ||
gradient_accumulation_steps: 1 | ||
dont_save_in_the_end: True | ||
save_each_epochs: 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.