-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_images.py
213 lines (188 loc) · 8.7 KB
/
plot_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import sys, os
from geopy import distance
import random
from PIL import Image
from PIL import ImageOps
from PIL import ImageDraw
from PIL import ImageFont
from numpy import asarray
from skimage.measure import block_reduce
import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib import cm,colors
import cv2
# just what it sounds like
def cookie_cutter(data, outline, fill=None, fxn=None):
# if 2d, add temporary dim
if len(data.shape) == 2:
data = np.reshape(data,(data.shape[0],data.shape[1],1))
# apply mask
if fill is not None:
for i in range(data.shape[0]):
for j in range(data.shape[1]):
if outline[i,j] == 0:
data[i,j,:] = fill
# apply log or other fxn
if fxn is not None:
for i in range(data.shape[0]):
for j in range(data.shape[1]):
if outline[i,j] == 1:
data[i,j,:] = fxn(data[i,j,:])
# remove extra dim if it was 2d
if data.shape[2] == 1:
data = np.reshape(data,(data.shape[0],data.shape[1]))
return data
# read PNG
def read_map(png, width):
data=np.load(png)
if data.shape[0] % width > 0 and width % data.shape[0] > 0:
print("make sure old map size is divisible by new size")
exit()
factor = int(float(data.shape[0]) / float(width))
if factor > 1: # compress
data = block_reduce(data, (factor,factor,1), np.mean)
elif factor < 1: # blow up
factor = int(1. / factor)
data = data.repeat(factor, axis=0).repeat(factor, axis=1)
return data
# reading black and white PNG of the habitat
def read_habitat_map(habitat_map, target_width):
outline=Image.open(habitat_map)
temp=asarray(outline)
outline = np.copy(temp)
outline = outline.astype(float)
# compress to target dims
rat = int(round(outline.shape[0]/target_width))
outline = block_reduce(outline, block_size=(rat,rat,1), func=np.mean)
# assign each pixel to land or water
mask = np.zeros((outline.shape[0],outline.shape[1]))
for i in range(outline.shape[0]):
for j in range(outline.shape[1]):
mean_val = np.mean(outline[i,j,0:3])
if mean_val < (255.0/2.0):
mask[i,j] = 1 # 1==land
return mask
# plotting fxns
def concat_h(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
def concat_bar(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))#, (255,255,255))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, im1.height-im2.height))
return dst
def concat_v(im1, im2):
dst = Image.new('RGB', (im1.width, im1.height + im2.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (0, im1.height))
return dst
# grab min and max values for rescaling sigma
def get_min_max(the_map, habi_map=None):
if habi_map is None:
# # (this approach won't work until you plot the heatmap in log scale)
# mean_sigma = np.mean(the_map[:,:,0])
# mean_k = np.mean(the_map[:,:,1])
# min_sigma = mean_sigma / 10
# max_sigma = mean_sigma * 10
# min_k = mean_k / 10
# max_k = mean_k * 10
#
min_sigma = np.min(the_map[:,:,0])
max_sigma = np.max(the_map[:,:,0])
min_k = np.min(the_map[:,:,1])
max_k = np.max(the_map[:,:,1])
else: # find range of sigma, and range of K inside the habitat for empirical interpretation
min_sigma,max_sigma,min_k,max_k=1e16,0,1e16,0 # defaults
for j in range(the_map.shape[0]):
for k in range(the_map.shape[1]):
if habi_map[j,k] == 1:
min_sigma = np.min([min_sigma,the_map[j,k,0]])
max_sigma = np.max([max_sigma,the_map[j,k,0]])
min_k = np.min([min_k,the_map[j,k,1]])
max_k = np.max([max_k,the_map[j,k,1]])
return min_sigma,max_sigma,min_k,max_k
# basic PNG map
def maplot(demap, plot_width, habitat_border=None):
rgb = np.concatenate([
np.full((plot_width, plot_width, 1), 0, dtype='uint8'),
np.full((plot_width, plot_width, 1), 0, dtype='uint8'),
np.reshape(demap[:,:], (plot_width,plot_width,1)),
np.reshape(demap[:,:], (plot_width,plot_width,1)),
], axis=-1)
im = Image.fromarray(rgb.astype("uint8"))
if habitat_border is not None:
im_border = Image.open(habitat_border)
newsize = (np.array(im_border).shape[0],np.array(im_border).shape[1])
im = im.resize(newsize)
im_border.paste(im, (0, 0), im)
im = im_border
return im
# plot heat map
def heatmap(demap, plot_width, tmpfile, color_scheme, cb_params=None, habitat_map_plot=None, habitat_border=None, locs=None):
# plot map
img = Image.fromarray(demap)
img = img.resize((plot_width,plot_width), resample=Image.BICUBIC) #resample=Image.BILINEAR) #resample=Image.NEAREST)
img.save(tmpfile)
img = cv2.imread(tmpfile, cv2.IMREAD_GRAYSCALE)
colormap = plt.get_cmap(color_scheme)
img = colormap(img)
img = Image.fromarray((img[:, :, :3] * 255).astype(np.uint8))
img.save(tmpfile)
img = cv2.imread(tmpfile)
if locs is not None:
for l in range(locs.shape[1]): # weird coordinates: 0,0 top left, first dim is x, second dim y
img = cv2.circle(img, (locs[0,l],plot_width-locs[1,l]), radius=3, color=(0,0,0), thickness=1)
if habitat_map_plot is not None:
img = cookie_cutter(img, habitat_map_plot, fill=65535)
cv2.imwrite(tmpfile, img) # write temp file
img = Image.open(tmpfile) # read as PIL again
if habitat_border is not None:
im_border = Image.open(habitat_border)
im_border = im_border.resize((plot_width,plot_width))
img.paste(im_border, (0,0), ImageOps.invert(ImageOps.grayscale(im_border)))
img = ImageOps.expand(img, border=10, fill='white')
# color bar
if cb_params is not None:
fig = plt.figure()
ax = fig.add_axes([0, 0.05, 0.06, 1]) # left, bottom, width, height
#norm = colors.Normalize(cb_params["min"],cb_params["max"])
norm = colors.LogNorm(cb_params["min"],cb_params["max"]) # log scale
#r = float(cb_params["max"]-cb_params["min"])
r = np.log(cb_params["max"])-np.log(cb_params["min"])
colormap = plt.get_cmap(color_scheme) # _r for reverse
cb = mpl.colorbar.ColorbarBase(ax, cm.ScalarMappable(norm=norm, cmap=colormap))
#ticks = [cb_params["min"],cb_params["min"]+(r/4),cb_params["min"]+(r/2),cb_params["min"]+(3*r/4),cb_params["max"]]
ticks = [np.log(cb_params["min"]),
np.log(cb_params["min"])+(r/4),
np.log(cb_params["min"])+(r/2),
np.log(cb_params["min"])+(3*r/4),
np.log(cb_params["max"]),
]
ticks = np.exp(ticks)
labels = cb.ax.minorticks_off() # was key to getting rid of "default" ticks
cb.set_ticks(ticks)
if cb_params["min"] >= 0.1 and cb_params["max"] <= 100:
cb.set_ticklabels(np.round(np.array(ticks), 1))
tick_space = 100
else:
cb.set_ticklabels([f'{x:.1e}' for x in ticks]) # scientific notation
tick_space = 130
cb.ax.tick_params(labelsize=16)
plt.savefig(tmpfile, bbox_inches='tight')
plt.close()
fig.clear()
cb = Image.open(tmpfile)
white_background = Image.new("RGB", (cb.size[0], 50), (255, 255, 255)) # adding some white space above bar
cb = concat_v(white_background, cb)
cb = cb.resize((tick_space,520))
img = concat_bar(img, cb)
os.remove(tmpfile)
# text label
font_path = os.path.join(cv2.__path__[0],'qt','fonts',cb_params["font"])
myfont = ImageFont.truetype(font_path, size=24)
t = ImageDraw.Draw(img)
t.text(cb_params["text_pos"], cb_params["text"], fill=(0,0,0), font=myfont)
return img