-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHW5.R
278 lines (229 loc) · 7.89 KB
/
HW5.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#load libraries
library(Rtsne)
library(ggplot2)
library(scattermore)
library(gridExtra)
library(reshape2)
library(cowplot)
library(Hmisc)
library(tidyr)
#load mystery spleen data
data <- read.csv('~/Dropbox/JHU/Courses/R_genomic_data_visualization/codex_spleen_subset.csv.gz')
head(data)
#downsample to 5000
#set.seed(0)
#vi <- sample(data[,1],10000)
#ds <- data[data$X %in% vi,]
ds <- data
#make matrix of position
pos <- ds[, c('x','y')]
rownames(pos) <- ds[,1]
plot(pos, pch='.')
#make matrix of area
area <- ds[,'area']
# histogram of area for cells
histdf <- data.frame(area)
rownames(histdf) <- ds[,1]
phist <- ggplot(data = histdf,
mapping = aes(x=area)) +
geom_histogram(mapping = aes(), binwidth = 100,boundary=0, closed="right") +
theme_classic(base_size=22) +
labs(title="Histogram of cell area", x="area", y = "count")
phist
#plot position of cells colored by cell area
v <- c(0, 100/max(area), 800/max(area), 1)
area_col <- c("gray", "white", "red","black")
dfpo <- data.frame(x = pos[,1],
y = pos[,2],
cell_area = area)
ppo <- ggplot(data = dfpo, mapping = aes(x = x, y = y)) +
geom_scattermore(mapping = aes(col = cell_area), pointsize=1) +
scale_color_gradientn("area", colours = area_col, values = v) +
theme_classic(base_size=22) +
labs(title="Cells by area", x = "x position" , y = "y position")+
theme(axis.title=element_text(size=12), plot.title = element_text(size=15))
ppo
# histogram and position plot looking at area
grid.arrange(phist, ppo, ncol=2)
#save
png("area_plots.png", width = 2134, height = 1000)
grid.arrange(phist, ppo, ncol=2)
dev.off()
#make matrix of gene expression data without position
gexp <- ds[, 5:ncol(ds)]
rownames(gexp) <- ds[,1]
head(gexp)
# histograms of expression for all proteins
# use tidyr to make long data to make histograms
data_long <- gexp %>%
pivot_longer(colnames(gexp)) %>%
as.data.frame()
head(data_long)
ggp1 <- ggplot(data_long, aes(x = value)) + # Draw each column as histogram
geom_histogram() +
facet_wrap(~ name, scales = "free")
ggp1
#save histograms at readable size
png("histograms.png", width = 2500, height = 1500)
ggp1
dev.off()
#normalize intensity by area, counts per thousand
normgexp <- gexp/area*1e3
head(normgexp)
# histograms of normalized expression of all proteins
# use tidyr to make long data to make histograms
normgexp_long <- normgexp %>%
pivot_longer(colnames(normgexp)) %>%
as.data.frame()
head(normgexp_long)
ggp2 <- ggplot(normgexp_long, aes(x = value)) + # Draw each column as histogram
geom_histogram() +
facet_wrap(~ name, scales = "free")
ggp2
#save histograms at readable size
png("histograms_norm.png", width = 2500, height = 1500)
ggp2
dev.off()
#add pseudocounts to do log of normalized expression
mat <- log10(normgexp+1)
# histograms of log normalized expression of all proteins
# use tidyr to make long data to make histograms
mat_long <- mat %>%
pivot_longer(colnames(mat)) %>%
as.data.frame()
head(mat_long)
ggp3 <- ggplot(mat_long, aes(x = value)) + # Draw each column as histogram
geom_histogram() +
facet_wrap(~ name, scales = "free")
ggp3
#save histograms at readable size
png("histograms_norm_log.png", width = 2500, height = 1500)
ggp3
dev.off()
###############
#PCA
# on log normalized expression of all proteins
set.seed(0)
pcs <-prcomp(mat)
head(pcs)
summary(pcs)
df <- data.frame(x=c(1:28), y=pcs$sdev[1:28])
p <- ggplot(data = df, mapping = aes(x=x,y=y) ) + geom_line() +
labs(title="Principle Components", x="index", y = "standard deviation")
p
#loading on PCs?
###############
# tSNE
set.seed(0)
# variables: 10 principle components and perplexity set at 30
emb <- Rtsne(pcs$x[,1:10], dims=2, perplexity = 30)$Y
rownames(emb) <- rownames(mat)
head(emb)
dim(emb)
###############
# kmeans on gene expression
# variables: 10 centers
set.seed(0)
com <- kmeans(mat, centers=10)
#plot kmeans clusters on tSNE dimensions
dfk <- data.frame(x = emb[,1],
y = emb[,2],
col = as.factor(com$cluster))
pk <- ggplot(data = dfk,
mapping = aes(x = x, y = y)) +
geom_scattermore(mapping = aes(col = col),
pointsize=1) + theme_classic(base_size=22) +
labs(title="Kmeans on protein expression", x = "tSNE1" , y = "tSNE2") +
theme(axis.title=element_text(size=12), plot.title = element_text(size=15))
pk
#plot kmeans clusters with cell positions
dfpo2 <- data.frame(x = pos[,1],
y = pos[,2],
col = as.factor(com$cluster))
ppo2 <- ggplot(data = dfpo2, mapping = aes(x = x, y = y)) +
geom_scattermore(mapping = aes(col = col), pointsize=1) +
theme_classic(base_size=22) +
labs(title="Cells by cluster", x = "x position" , y = "y position")+
theme(axis.title=element_text(size=12), plot.title = element_text(size=15))
ppo2
grid.arrange(pk, ppo2, ncol=2)
#pick an interesting cluster based on cell position
cluster_ex <- 10
#plot cell positions with interesting cluster labeled
dfpo3 <- data.frame(x = pos[,1],
y = pos[,2],
col = as.factor(com$cluster) == cluster_ex)
ppo3 <- ggplot(data = dfpo3, mapping = aes(x = x, y = y)) +
geom_scattermore(mapping = aes(col = col), pointsize=1) +
theme_classic(base_size=22) +
labs(title="Cells in cluster 10", x = "x position" , y = "y position")+
theme(axis.title=element_text(size=12), plot.title = element_text(size=15))
ppo3
grid.arrange(pk, ppo2, ppo3, ncol=3)
#save
png("kmeans.png", width = 2134, height = 1246)
grid.arrange(pk, ppo2, ppo3, ncol=3)
dev.off()
#########
# Differential protein expression
# Box plots by cluster for proteins expressed with distribution peak above 3
protein_short_list <- c('CD107a','CD15','CD163','CD34', 'CD4', 'CD8', 'Vimentin','SMActin')
dfcs <- reshape2::melt(
data.frame(id=rownames(mat),
mat[, protein_short_list],
col=as.factor(com$cluster)))
pcs <- ggplot(data = dfcs,
mapping = aes(x=col, y=value, fill=col)) +
geom_boxplot() +
theme_classic(base_size=22) +
facet_wrap(~ variable)
pcs
#save boxplot at readable size
png("boxplots.png", width = 2134, height = 1246)
pcs
dev.off()
# Box plots by cluster for proteins not in above group
dfcs2 <- reshape2::melt(
data.frame(id=rownames(mat),
mat[, !(colnames(mat) %in% protein_short_list)],
col=as.factor(com$cluster)))
pcs2 <- ggplot(data = dfcs2,
mapping = aes(x=col, y=value, fill=col)) +
geom_boxplot() +
theme_classic(base_size=22) +
facet_wrap(~ variable)
pcs2
#save boxplot at readable size
png("boxplots2.png", width = 2134, height = 1246)
pcs2
dev.off()
#pick an interesting cluster based on cell position
cluster_ex2 <- 7
#plot cell positions with interesting cluster labeled
dfpo4 <- data.frame(x = pos[,1],
y = pos[,2],
col = as.factor(com$cluster) == cluster_ex2)
ppo4 <- ggplot(data = dfpo4, mapping = aes(x = x, y = y)) +
geom_scattermore(mapping = aes(col = col), pointsize=1) +
theme_classic(base_size=22) +
labs(title="Cells in interesting cluster", x = "x position" , y = "y position")+
theme(axis.title=element_text(size=12), plot.title = element_text(size=15))
ppo4
# Box plots by cluster for podoplanin, highly expressed in cluster 10
dfcs3 <- reshape2::melt(
data.frame(id=rownames(mat),
mat[, 'Podoplanin'],
col=as.factor(com$cluster)))
pcs3 <- ggplot(data = dfcs3,
mapping = aes(x=col, y=value, fill=col)) +
geom_boxplot() +
theme_classic(base_size=22) +
facet_wrap(~ variable)
pcs3
row_1<- plot_grid( pk, ppo2, ncol=2, nrow=1, rel_widths = c(1,1), labels = c('A','B'))
row_2<- plot_grid( ppo3, pcs3, ncol=2, nrow=1, rel_widths = c(1,1), labels = c('C','D'))
plot_grid(row_1, row_2, nrow= 2)
#save summary of plots
png("final.png", width = 1776, height = 1190)
plot_grid(row_1, row_2, nrow= 2)
dev.off()