forked from rweather/arduinolibs
-
Notifications
You must be signed in to change notification settings - Fork 4
/
GF128.cpp
571 lines (556 loc) · 17.2 KB
/
GF128.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/*
* Copyright (C) 2016 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "GF128.h"
#include "utility/EndianUtil.h"
#include <string.h>
/**
* \class GF128 GF128.h <GF128.h>
* \brief Operations in the Galois field GF(2^128).
*
* This class contains helper functions for performing operations in
* the Galois field GF(2^128) which is used as the basis of GCM and GHASH.
* These functions are provided for use by other cryptographic protocols
* that make use of GF(2^128).
*
* Most of the functions in this class use the field, polynomial, and
* byte ordering conventions described in NIST SP 800-38D (GCM). The one
* exception is dblEAX() which uses the conventions of EAX mode instead.
*
* References: <a href="http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf">NIST SP 800-38D</a>
*
* \sa GCM, GHASH
*/
/**
* \brief Initialize multiplication in the GF(2^128) field.
*
* \param H The hash state to be initialized.
* \param key Points to the 16 byte authentication key which is assumed
* to be in big-endian byte order.
*
* This function and the companion mul() are intended for use by other
* classes that need access to the raw GF(2^128) field multiplication of
* GHASH without the overhead of GHASH itself.
*
* \sa mul(), dbl()
*/
void GF128::mulInit(uint32_t H[4], const void *key)
{
#if defined(__AVR__)
// Copy the key into H but leave it in big endian order because
// we can correct for the byte order in mul() below.
memcpy(H, key, 16);
#else
// Copy the key into H and convert from big endian to host order.
memcpy(H, key, 16);
#if defined(CRYPTO_LITTLE_ENDIAN)
H[0] = be32toh(H[0]);
H[1] = be32toh(H[1]);
H[2] = be32toh(H[2]);
H[3] = be32toh(H[3]);
#endif
#endif
}
/**
* \brief Perform a multiplication in the GF(2^128) field.
*
* \param Y The first value to multiply, and the result. This array is
* assumed to be in big-endian order on entry and exit.
* \param H The second value to multiply, which must have been initialized
* by the mulInit() function.
*
* This function and the companion mulInit() are intended for use by other
* classes that need access to the raw GF(2^128) field multiplication of
* GHASH without the overhead of GHASH itself.
*
* \sa mulInit(), dbl()
*/
void GF128::mul(uint32_t Y[4], const uint32_t H[4])
{
#if defined(__AVR__)
uint32_t Z[4] = {0, 0, 0, 0}; // Z = 0
uint32_t V0 = H[0]; // V = H
uint32_t V1 = H[1];
uint32_t V2 = H[2];
uint32_t V3 = H[3];
// Multiply Z by V for the set bits in Y, starting at the top.
// This is a very simple bit by bit version that may not be very
// fast but it should be resistant to cache timing attacks.
for (uint8_t posn = 0; posn < 16; ++posn) {
uint8_t value = ((const uint8_t *)Y)[posn];
for (uint8_t bit = 0; bit < 8; ++bit) {
__asm__ __volatile__ (
// Extract the high bit of "value" and turn it into a mask.
"ldd r24,%8\n"
"lsl r24\n"
"std %8,r24\n"
"mov __tmp_reg__,__zero_reg__\n"
"sbc __tmp_reg__,__zero_reg__\n"
// XOR V with Z if the bit is 1.
"mov r24,%D0\n" // Z0 ^= (V0 & mask)
"and r24,__tmp_reg__\n"
"ldd r25,%D4\n"
"eor r25,r24\n"
"std %D4,r25\n"
"mov r24,%C0\n"
"and r24,__tmp_reg__\n"
"ldd r25,%C4\n"
"eor r25,r24\n"
"std %C4,r25\n"
"mov r24,%B0\n"
"and r24,__tmp_reg__\n"
"ldd r25,%B4\n"
"eor r25,r24\n"
"std %B4,r25\n"
"mov r24,%A0\n"
"and r24,__tmp_reg__\n"
"ldd r25,%A4\n"
"eor r25,r24\n"
"std %A4,r25\n"
"mov r24,%D1\n" // Z1 ^= (V1 & mask)
"and r24,__tmp_reg__\n"
"ldd r25,%D5\n"
"eor r25,r24\n"
"std %D5,r25\n"
"mov r24,%C1\n"
"and r24,__tmp_reg__\n"
"ldd r25,%C5\n"
"eor r25,r24\n"
"std %C5,r25\n"
"mov r24,%B1\n"
"and r24,__tmp_reg__\n"
"ldd r25,%B5\n"
"eor r25,r24\n"
"std %B5,r25\n"
"mov r24,%A1\n"
"and r24,__tmp_reg__\n"
"ldd r25,%A5\n"
"eor r25,r24\n"
"std %A5,r25\n"
"mov r24,%D2\n" // Z2 ^= (V2 & mask)
"and r24,__tmp_reg__\n"
"ldd r25,%D6\n"
"eor r25,r24\n"
"std %D6,r25\n"
"mov r24,%C2\n"
"and r24,__tmp_reg__\n"
"ldd r25,%C6\n"
"eor r25,r24\n"
"std %C6,r25\n"
"mov r24,%B2\n"
"and r24,__tmp_reg__\n"
"ldd r25,%B6\n"
"eor r25,r24\n"
"std %B6,r25\n"
"mov r24,%A2\n"
"and r24,__tmp_reg__\n"
"ldd r25,%A6\n"
"eor r25,r24\n"
"std %A6,r25\n"
"mov r24,%D3\n" // Z3 ^= (V3 & mask)
"and r24,__tmp_reg__\n"
"ldd r25,%D7\n"
"eor r25,r24\n"
"std %D7,r25\n"
"mov r24,%C3\n"
"and r24,__tmp_reg__\n"
"ldd r25,%C7\n"
"eor r25,r24\n"
"std %C7,r25\n"
"mov r24,%B3\n"
"and r24,__tmp_reg__\n"
"ldd r25,%B7\n"
"eor r25,r24\n"
"std %B7,r25\n"
"mov r24,%A3\n"
"and r24,__tmp_reg__\n"
"ldd r25,%A7\n"
"eor r25,r24\n"
"std %A7,r25\n"
// Rotate V right by 1 bit.
"lsr %A0\n"
"ror %B0\n"
"ror %C0\n"
"ror %D0\n"
"ror %A1\n"
"ror %B1\n"
"ror %C1\n"
"ror %D1\n"
"ror %A2\n"
"ror %B2\n"
"ror %C2\n"
"ror %D2\n"
"ror %A3\n"
"ror %B3\n"
"ror %C3\n"
"ror %D3\n"
"mov r24,__zero_reg__\n"
"sbc r24,__zero_reg__\n"
"andi r24,0xE1\n"
"eor %A0,r24\n"
: "+r"(V0), "+r"(V1), "+r"(V2), "+r"(V3)
: "Q"(Z[0]), "Q"(Z[1]), "Q"(Z[2]), "Q"(Z[3]), "Q"(value)
: "r24", "r25"
);
}
}
// We have finished the block so copy Z into Y and byte-swap.
__asm__ __volatile__ (
"ldd __tmp_reg__,%A0\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%B0\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%C0\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%D0\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%A1\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%B1\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%C1\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%D1\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%A2\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%B2\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%C2\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%D2\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%A3\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%B3\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%C3\n"
"st X+,__tmp_reg__\n"
"ldd __tmp_reg__,%D3\n"
"st X,__tmp_reg__\n"
: : "Q"(Z[0]), "Q"(Z[1]), "Q"(Z[2]), "Q"(Z[3]), "x"(Y)
);
#else // !__AVR__
uint32_t Z0 = 0; // Z = 0
uint32_t Z1 = 0;
uint32_t Z2 = 0;
uint32_t Z3 = 0;
uint32_t V0 = H[0]; // V = H
uint32_t V1 = H[1];
uint32_t V2 = H[2];
uint32_t V3 = H[3];
// Multiply Z by V for the set bits in Y, starting at the top.
// This is a very simple bit by bit version that may not be very
// fast but it should be resistant to cache timing attacks.
for (uint8_t posn = 0; posn < 16; ++posn) {
uint8_t value = ((const uint8_t *)Y)[posn];
for (uint8_t bit = 0; bit < 8; ++bit, value <<= 1) {
// Extract the high bit of "value" and turn it into a mask.
uint32_t mask = (~((uint32_t)(value >> 7))) + 1;
// XOR V with Z if the bit is 1.
Z0 ^= (V0 & mask);
Z1 ^= (V1 & mask);
Z2 ^= (V2 & mask);
Z3 ^= (V3 & mask);
// Rotate V right by 1 bit.
mask = ((~(V3 & 0x01)) + 1) & 0xE1000000;
V3 = (V3 >> 1) | (V2 << 31);
V2 = (V2 >> 1) | (V1 << 31);
V1 = (V1 >> 1) | (V0 << 31);
V0 = (V0 >> 1) ^ mask;
}
}
// We have finished the block so copy Z into Y and byte-swap.
Y[0] = htobe32(Z0);
Y[1] = htobe32(Z1);
Y[2] = htobe32(Z2);
Y[3] = htobe32(Z3);
#endif // !__AVR__
}
/**
* \brief Doubles a value in the GF(2^128) field.
*
* \param V The value to double, and the result. This array is
* assumed to be in big-endian order on entry and exit.
*
* Block cipher modes such as <a href="https://en.wikipedia.org/wiki/Disk_encryption_theory#Xor-encrypt-xor_.28XEX.29">XEX</a>
* are similar to CTR mode but instead of incrementing the nonce every
* block, the modes multiply the nonce by 2 in the GF(2^128) field every
* block. This function is provided to help with implementing such modes.
*
* \sa dblEAX(), dblXTS(), mul()
*/
void GF128::dbl(uint32_t V[4])
{
#if defined(__AVR__)
__asm__ __volatile__ (
"ld r16,Z\n"
"ldd r17,Z+1\n"
"ldd r18,Z+2\n"
"ldd r19,Z+3\n"
"lsr r16\n"
"ror r17\n"
"ror r18\n"
"ror r19\n"
"std Z+1,r17\n"
"std Z+2,r18\n"
"std Z+3,r19\n"
"ldd r17,Z+4\n"
"ldd r18,Z+5\n"
"ldd r19,Z+6\n"
"ldd r20,Z+7\n"
"ror r17\n"
"ror r18\n"
"ror r19\n"
"ror r20\n"
"std Z+4,r17\n"
"std Z+5,r18\n"
"std Z+6,r19\n"
"std Z+7,r20\n"
"ldd r17,Z+8\n"
"ldd r18,Z+9\n"
"ldd r19,Z+10\n"
"ldd r20,Z+11\n"
"ror r17\n"
"ror r18\n"
"ror r19\n"
"ror r20\n"
"std Z+8,r17\n"
"std Z+9,r18\n"
"std Z+10,r19\n"
"std Z+11,r20\n"
"ldd r17,Z+12\n"
"ldd r18,Z+13\n"
"ldd r19,Z+14\n"
"ldd r20,Z+15\n"
"ror r17\n"
"ror r18\n"
"ror r19\n"
"ror r20\n"
"std Z+12,r17\n"
"std Z+13,r18\n"
"std Z+14,r19\n"
"std Z+15,r20\n"
"mov r17,__zero_reg__\n"
"sbc r17,__zero_reg__\n"
"andi r17,0xE1\n"
"eor r16,r17\n"
"st Z,r16\n"
: : "z"(V)
: "r16", "r17", "r18", "r19", "r20"
);
#else
uint32_t V0 = be32toh(V[0]);
uint32_t V1 = be32toh(V[1]);
uint32_t V2 = be32toh(V[2]);
uint32_t V3 = be32toh(V[3]);
uint32_t mask = ((~(V3 & 0x01)) + 1) & 0xE1000000;
V3 = (V3 >> 1) | (V2 << 31);
V2 = (V2 >> 1) | (V1 << 31);
V1 = (V1 >> 1) | (V0 << 31);
V0 = (V0 >> 1) ^ mask;
V[0] = htobe32(V0);
V[1] = htobe32(V1);
V[2] = htobe32(V2);
V[3] = htobe32(V3);
#endif
}
/**
* \brief Doubles a value in the GF(2^128) field using EAX conventions.
*
* \param V The value to double, and the result. This array is
* assumed to be in big-endian order on entry and exit.
*
* This function differs from dbl() that it uses the conventions of EAX mode
* instead of those of NIST SP 800-38D (GCM). The two operations have
* equivalent security but the bits are ordered differently with the
* value shifted left instead of right.
*
* References: https://en.wikipedia.org/wiki/EAX_mode,
* http://web.cs.ucdavis.edu/~rogaway/papers/eax.html
*
* \sa dbl(), dblXTS(), mul()
*/
void GF128::dblEAX(uint32_t V[4])
{
#if defined(__AVR__)
__asm__ __volatile__ (
"ldd r16,Z+15\n"
"ldd r17,Z+14\n"
"ldd r18,Z+13\n"
"ldd r19,Z+12\n"
"lsl r16\n"
"rol r17\n"
"rol r18\n"
"rol r19\n"
"std Z+14,r17\n"
"std Z+13,r18\n"
"std Z+12,r19\n"
"ldd r17,Z+11\n"
"ldd r18,Z+10\n"
"ldd r19,Z+9\n"
"ldd r20,Z+8\n"
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"std Z+11,r17\n"
"std Z+10,r18\n"
"std Z+9,r19\n"
"std Z+8,r20\n"
"ldd r17,Z+7\n"
"ldd r18,Z+6\n"
"ldd r19,Z+5\n"
"ldd r20,Z+4\n"
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"std Z+7,r17\n"
"std Z+6,r18\n"
"std Z+5,r19\n"
"std Z+4,r20\n"
"ldd r17,Z+3\n"
"ldd r18,Z+2\n"
"ldd r19,Z+1\n"
"ld r20,Z\n"
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"std Z+3,r17\n"
"std Z+2,r18\n"
"std Z+1,r19\n"
"st Z,r20\n"
"mov r17,__zero_reg__\n"
"sbc r17,__zero_reg__\n"
"andi r17,0x87\n"
"eor r16,r17\n"
"std Z+15,r16\n"
: : "z"(V)
: "r16", "r17", "r18", "r19", "r20"
);
#else
uint32_t V0 = be32toh(V[0]);
uint32_t V1 = be32toh(V[1]);
uint32_t V2 = be32toh(V[2]);
uint32_t V3 = be32toh(V[3]);
uint32_t mask = ((~(V0 >> 31)) + 1) & 0x00000087;
V0 = (V0 << 1) | (V1 >> 31);
V1 = (V1 << 1) | (V2 >> 31);
V2 = (V2 << 1) | (V3 >> 31);
V3 = (V3 << 1) ^ mask;
V[0] = htobe32(V0);
V[1] = htobe32(V1);
V[2] = htobe32(V2);
V[3] = htobe32(V3);
#endif
}
/**
* \brief Doubles a value in the GF(2^128) field using XTS conventions.
*
* \param V The value to double, and the result. This array is
* assumed to be in littlen-endian order on entry and exit.
*
* This function differs from dbl() that it uses the conventions of XTS mode
* instead of those of NIST SP 800-38D (GCM). The two operations have
* equivalent security but the bits are ordered differently with the
* value shifted left instead of right.
*
* References: <a href="http://libeccio.di.unisa.it/Crypto14/Lab/p1619.pdf">IEEE Std. 1619-2007, XTS-AES</a>
*
* \sa dbl(), dblEAX(), mul()
*/
void GF128::dblXTS(uint32_t V[4])
{
#if defined(__AVR__)
__asm__ __volatile__ (
"ld r16,Z\n"
"ldd r17,Z+1\n"
"ldd r18,Z+2\n"
"ldd r19,Z+3\n"
"lsl r16\n"
"rol r17\n"
"rol r18\n"
"rol r19\n"
"std Z+1,r17\n"
"std Z+2,r18\n"
"std Z+3,r19\n"
"ldd r17,Z+4\n"
"ldd r18,Z+5\n"
"ldd r19,Z+6\n"
"ldd r20,Z+7\n"
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"std Z+4,r17\n"
"std Z+5,r18\n"
"std Z+6,r19\n"
"std Z+7,r20\n"
"ldd r17,Z+8\n"
"ldd r18,Z+9\n"
"ldd r19,Z+10\n"
"ldd r20,Z+11\n"
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"std Z+8,r17\n"
"std Z+9,r18\n"
"std Z+10,r19\n"
"std Z+11,r20\n"
"ldd r17,Z+12\n"
"ldd r18,Z+13\n"
"ldd r19,Z+14\n"
"ldd r20,Z+15\n"
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"std Z+12,r17\n"
"std Z+13,r18\n"
"std Z+14,r19\n"
"std Z+15,r20\n"
"mov r17,__zero_reg__\n"
"sbc r17,__zero_reg__\n"
"andi r17,0x87\n"
"eor r16,r17\n"
"st Z,r16\n"
: : "z"(V)
: "r16", "r17", "r18", "r19", "r20"
);
#else
uint32_t V0 = le32toh(V[0]);
uint32_t V1 = le32toh(V[1]);
uint32_t V2 = le32toh(V[2]);
uint32_t V3 = le32toh(V[3]);
uint32_t mask = ((~(V3 >> 31)) + 1) & 0x00000087;
V3 = (V3 << 1) | (V2 >> 31);
V2 = (V2 << 1) | (V1 >> 31);
V1 = (V1 << 1) | (V0 >> 31);
V0 = (V0 << 1) ^ mask;
V[0] = htole32(V0);
V[1] = htole32(V1);
V[2] = htole32(V2);
V[3] = htole32(V3);
#endif
}