-
Notifications
You must be signed in to change notification settings - Fork 8
/
vbt_barbell_tracker.py
executable file
·397 lines (341 loc) · 14.8 KB
/
vbt_barbell_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from collections import deque
import numpy as np
import argparse
import imutils
from imutils.video import FPS
import cv2
import math
import json
import simpleaudio as sa
import wave
def is_inflection(velocity, opposite_direction_is_true):
if opposite_direction_is_true:
if velocity < 0:
return True
else:
return False
if opposite_direction_is_true is False:
if velocity >= 0:
return True
else:
return False
def analyze_for_rep(history, reps):
pos = 0
first_phase = False
second_phase = False
concentric_first_lift = False
displacement = 0
first_phase_disp = 0
second_phase_disp = 0
velocities = []
error = 0
vector_threshold = 8
print("Analyzing movement for rep...")
# We need at least vector_threshold points to determine a direction and almost definitely many more for a complete rep
if len(history) < 2 * vector_threshold:
return(False, (0.0, 0.0, 0))
# Method
# 1. determine direction by looking at last X points
# 2. keep reading and ensure each point matches initial direction up until inflection point
# 3. Read all points after inflection up until next inflection or end of history
# 4. Use criteria to determine if it's a rep
for direction_pos in range(1, vector_threshold):
displacement += history[-direction_pos][2]
if displacement > 0:
concentric_first_lift = True
elif displacement < 0:
concentric_first_lift = False
else:
# need more data to determine if it's a rep
return(False, (0.0, 0.0, 0))
while True:
pos += 1
if pos > len(history):
break
print(history[-pos])
if not first_phase:
# Count at least 1 first phase point before inflection and at least 100mm of displacement
if is_inflection(history[-pos][2], concentric_first_lift) and first_phase_disp > 200:
print("First Phase Displacement: {}".format(first_phase_disp))
first_phase = True
else:
if is_inflection(history[-pos][2], concentric_first_lift):
if error > 3:
print("Found 3 error points that go in the opposite direction")
break
error += 1
continue
else:
first_phase_disp += abs(history[-pos][1])
if concentric_first_lift:
velocities.append(abs(history[-pos][2]))
continue
if not second_phase:
# Count at least 1 second phase point before first inflection and 200mm of displacement
# or we're on the last point in history
if (is_inflection(history[-pos][2], not concentric_first_lift) and second_phase_disp > 200) or (pos == len(history) and second_phase_disp > 200):
second_phase = True
print("Second Phase Displacement: {}".format(second_phase_disp))
else:
second_phase_disp += abs(history[-pos][1])
if not concentric_first_lift:
velocities.append(abs(history[-pos][2]))
continue
# All this criteria should give us a high probability of counting a rep
# Move more than 100mm, difference between eccentric and concentric displacement < 200mm
if first_phase and second_phase and abs(second_phase_disp - first_phase_disp) < 100:
print("Found rep {}! first: {} mm, second: {} mm".format(reps + 1, first_phase_disp, second_phase_disp))
if concentric_first_lift:
concentric_disp = first_phase_disp
else:
concentric_disp = second_phase_disp
avg_vel = sum(velocities) / len(velocities)
peak_vel = max(velocities)
return(True, (avg_vel, peak_vel, concentric_disp))
return(False, (0.0, 0.0, 0))
def analyze_for_x_movement(history):
# When there is a pause or inflection, let's check our previous points to see
# if there is more movement in the x direction than the y.
# This would indicate deracking/racking/setting up and we want to clear the history
# of any small movements that would confuse the algorithm from detecting the start
# of a rep, whether it be a concentric or eccentric first exercise.
pos = 0
x_displacement = 0
y_displacement = 0
print("Analyzing movement for large x displacement over y")
while pos < len(history):
x_displacement += abs(history[pos][0])
y_displacement += abs(history[pos][1])
pos += 1
if (x_displacement - y_displacement) >= 0:
return True
return False
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the (optional) video file")
args = vars(ap.parse_args())
# Calibrate our camera
with open("fisheye_calibration_data.json", "r") as f:
calibration_data = json.load(f)
print(calibration_data)
# Need to scale K, D, and dim
# Dim should be 800x600
# Original calibration used an image of 5120 × 3840 so same aspect ratio, which is good
dim = (800, 600)
scaled_K = np.asarray(calibration_data['K']) * dim[0] / 5120 # The values of K is to scale with image dimension.
scaled_K[2][2] = 1.0 # Except that K[2][2] is always 1.0
# This is how scaled_K, dim2 and balance are used to determine the final K used to un-distort image. OpenCV document failed to make this clear!
new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(scaled_K, np.asarray(calibration_data['D']), dim, np.eye(3), balance=calibration_data['balance'])
calibration_map1, calibration_map2 = cv2.fisheye.initUndistortRectifyMap(scaled_K, np.asarray(calibration_data['D']), np.eye(3), new_K, dim, cv2.CV_16SC2)
# Different lighting conditions
# 1.png
# (hMin = 40 , sMin = 46, vMin = 0), (hMax = 86 , sMax = 88, vMax = 181)
# 2.png
# (hMin = 33 , sMin = 48, vMin = 103), (hMax = 64 , sMax = 156, vMax = 255)
greenLower = (33, 46, 80)
greenUpper = (86, 156, 255)
if not args.get("video", False):
camera = cv2.VideoCapture(0)
else:
camera = cv2.VideoCapture(args["video"])
# Read first image
(grabbed, frame) = camera.read()
frameCount = int(camera.get(cv2.CAP_PROP_FRAME_COUNT))
vid_fps = int(camera.get(cv2.CAP_PROP_FPS))
print(vid_fps)
# override with 25 fps
vid_fps = 25
fps = FPS().start()
points = deque(maxlen=10000)
last_x = None
last_y = None
ref_radius = None
velocity = 0.0
x_velocity = 0.0
y_velocity = 0.0
y_vector_up = False
moving = False
analyzed_rep = False
barbell_radius = 25
reps = 0
history = []
# How many milliseconds at rest until we consider it a rep?
rep_rest_threshold = 80.0
rep_rest_reset_threshold = 120000
rep_rest_time = 0.0
avg_vel = 0.0
peak_vel = 0.0
displacement = 0
avg_velocities = []
peak_velocities = []
velocity_loss_threshold = 20
in_range = True
end_set = False
colour = (0, 255, 0)
avg_velocity = 0
first_velocity = 0
avg_velocity_loss = 0
cv2.namedWindow("output", cv2.WINDOW_OPENGL)
while True:
(grabbed, frame) = camera.read()
if args.get("video") and not grabbed:
break
# video image is 2560 × 1920 = 1.3333333...
# should be 800/600 to maintain aspect ratio
frame = imutils.resize(frame, width=800)
# Remove barrel/fisheye distortion
frame = cv2.remap(frame, calibration_map1, calibration_map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
# Crop the frame to get rid of the deadspace from undistorting it
frame = frame[100:500, 100:700]
frame = imutils.resize(frame, width=800)
im_height, im_width, _ = frame.shape
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# Our barbell end is 5cm in diameter
# fps = camera.get(cv2.CAP_PROP_FPS)
# Each frame is 1/fps seconds in length
# 1. Calculate the pixel distance between last position and current position. That provides pixels travelled in 1/FPS seconds.
# That gives pixel distance between frames
# 2. How many pixels does the circle diameter occupy? Divide by 50mm and we get pixels/mm. Invert and we get mm/pixel
# Multiply 1 by 2 and we get instantaneous mm/s every 1/FPS
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
if last_x is None:
last_x = x
last_y = y
velocity = 0
y_velocity = 0
rep = False
if reps == 0:
in_range = True
avg_velocity = 0
peak_velocity = 0
avg_velocity_loss = 0
peak_velocity_loss = 0
end_set = False
colour = (0, 255, 0)
if radius / im_height > 0.0125:
# Take the first radius as the reference radius as it's stationary and most accurately represents dimensions
if ref_radius is None:
ref_radius = radius
mmpp = barbell_radius / ref_radius
print("ref_radius: {:.2f}, mmpp: {:.2f}".format(ref_radius, mmpp))
x_disp = last_x - x
y_disp = last_y - y
y_distance = y_disp * mmpp
x_distance = x_disp * mmpp
distance = math.sqrt(x_disp ** 2 + y_disp ** 2) * mmpp
if abs(y_distance) > barbell_radius / 4:
moving = True
analyzed_rep = False
velocity = distance * vid_fps / 1000
y_velocity = y_distance * vid_fps / 1000
rep_rest_time = 0.0
if y_velocity < 0.01 and y_velocity > -0.01:
moving = False
y_velocity = 0
rep_rest_time += 1 / vid_fps * 1000
print("distance: {} mm, velocity: {:.2f} m/s, x_dist: {} mm, y_dist: {} mm, y_vel: {:.2f} m/s".format(int(distance), float(velocity), int(x_distance), int(y_distance), float(y_velocity)))
history.append((int(x_distance), int(y_distance), y_velocity))
if (y_velocity > 0 and y_vector_up is False) or (y_velocity < 0 and y_vector_up is True):
y_vector_up = not y_vector_up
(rep, ret) = analyze_for_rep(history, reps)
else:
# Only log 0 once
if moving is True:
history.append((0, 0, 0))
moving = False
# Count how many milliseconds we're at 0 velocity
rep_rest_time += 1 / vid_fps * 1000
# analyze for last rep when we appear to rest for a threshold time
if (rep_rest_time > rep_rest_threshold) and not analyzed_rep:
analyzed_rep = True
if analyze_for_x_movement(history):
print("Detected significant x movement over y, resetting history...")
history = []
(rep, ret) = analyze_for_rep(history, reps)
if rep:
history = []
reps += 1
avg_velocities.append(ret[0])
peak_velocities.append(ret[1])
displacement = ret[2]
if reps == 1:
avg_velocity = avg_velocities[0]
peak_velocity = peak_velocities[0]
first_velocity = avg_velocity
if avg_velocity > 0.5:
in_range = True
wave_read = wave.open('good.wav', 'rb')
else:
in_range = False
wave_read = wave.open('bad.wav', 'rb')
else:
avg_velocity = avg_velocities[-1]
peak_velocity = peak_velocities[-1]
avg_velocity_loss = (avg_velocities[0] - avg_velocities[-1]) / avg_velocities[0] * 100
peak_velocity_loss = (peak_velocities[0] - peak_velocities[-1]) / peak_velocities[0] * 100
if avg_velocity_loss > velocity_loss_threshold:
end_set = True
wave_read = wave.open('bad.wav', 'rb')
colour = (0, 0, 255)
else:
end_set = False
wave_read = wave.open('good.wav', 'rb')
colour = (0, 255, 0)
audio_data = wave_read.readframes(wave_read.getnframes())
num_channels = wave_read.getnchannels()
bytes_per_sample = wave_read.getsampwidth()
sample_rate = wave_read.getframerate()
wave_obj = sa.WaveObject(audio_data, num_channels, bytes_per_sample, sample_rate)
play_obj = wave_obj.play()
last_x = x
last_y = y
cv2.circle(frame, (int(x), int(y)), int(ref_radius), (0, 255, 255), 2)
path_color = (0, 255, 255)
center = (int(x), int(y))
points.appendleft(center)
for i in range(1, len(points)):
if points[i - 1] is None or points[i] is None:
continue
cv2.line(frame, points[i - 1], points[i], path_color, 2)
cur_frame = camera.get(cv2.CAP_PROP_POS_FRAMES)
fps.update()
fps.stop()
info = [
("First set above 0.5 m/s", "{}".format(in_range), (0, 255, 0)),
("First set velocity", "{:.2f} m/s".format(first_velocity), (0, 255, 0)),
("Last AVG Con Velocity", "{:.2f} m/s".format(avg_velocity), (0, 255, 0)),
# ("Last PEAK Con Velocity", "{:.2f} m/s".format(peak_velocity), (0, 255, 0)),
("Last Displacement", "{:.2f} mm".format(displacement), (0, 255, 0)),
("AVG Velocity Loss", "{:.2f} %".format(avg_velocity_loss), (0, 255, 0)),
# ("PEAK Velocity Loss", "{:.2f} %".format(peak_velocity_loss), (0, 255, 0)),
("Reps", "{}".format(reps), (0, 255, 0)),
# ("FPS", "{:.2f}".format(fps.fps()), (0, 255, 0)),
# ("Y Velocity", "{:.2f} m/s".format(y_velocity), (0, 255, 0)),
("END SET", "{}".format(end_set), colour),
]
# loop over the info tuples and draw them on our frame
for (i, (k, v, c)) in enumerate(info):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (10, im_height - ((i * 40) + 20)),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, c, 2)
cv2.imshow("output", frame)
cv2.resizeWindow("output", (1500, 1000))
# cv2.imshow("Mask", mask)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
elif key == ord("r") or (rep_rest_time > rep_rest_reset_threshold):
reps = 0
avg_velocities = []
first_velocity = 0
peak_velocities = []
points.clear()
rep_rest_time = 0.0
camera.release()
cv2.destroyAllWindows()