-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathecdh.c
976 lines (832 loc) · 28.7 KB
/
ecdh.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
/*
Crypto using elliptic curves defined over the finite binary field GF(2^m) where m is prime.
The curves used are the anomalous binary curves (ABC-curves) or also called Koblitz curves.
This class of curves was chosen because it yields efficient implementation of operations.
Curves available - their different NIST/SECG names and eqivalent symmetric security level:
NIST SEC Group strength
------------------------------------
K-163 sect163k1 80 bit
B-163 sect163r2 80 bit
K-233 sect233k1 112 bit
B-233 sect233r1 112 bit
K-283 sect283k1 128 bit
B-283 sect283r1 128 bit
K-409 sect409k1 192 bit
B-409 sect409r1 192 bit
K-571 sect571k1 256 bit
B-571 sect571r1 256 bit
Curve parameters from:
http://www.secg.org/sec2-v2.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
Reference:
https://www.ietf.org/rfc/rfc4492.txt
*/
#include <stdint.h>
#include "ecdh.h"
/* margin for overhead needed in intermediate calculations */
#define BITVEC_MARGIN 3
#define BITVEC_NBITS (CURVE_DEGREE + BITVEC_MARGIN)
#define BITVEC_NWORDS ((BITVEC_NBITS + 31) / 32)
#define BITVEC_NBYTES (sizeof(uint32_t) * BITVEC_NWORDS)
/* Disable assertions? */
#ifndef DISABLE_ASSERT
#define DISABLE_ASSERT 0
#endif
#if defined(DISABLE_ASSERT) && (DISABLE_ASSERT == 1)
#define assert(...)
#else
#include <assert.h>
#endif
/* Default to a (somewhat) constant-time mode?
NOTE: The library is _not_ capable of operating in constant-time and leaks information via timing.
Even if all operations are written const-time-style, it requires the hardware is able to multiply in constant time.
Multiplication on ARM Cortex-M processors takes a variable number of cycles depending on the operands...
*/
#ifndef CONST_TIME
#define CONST_TIME 0
#endif
/* Default to using ECC_CDH (cofactor multiplication-variation) ? */
#ifndef ECDH_COFACTOR_VARIANT
#define ECDH_COFACTOR_VARIANT 0
#endif
/******************************************************************************/
/* the following type will represent bit vectors of length (CURVE_DEGREE+MARGIN) */
typedef uint32_t bitvec_t[BITVEC_NWORDS];
typedef bitvec_t gf2elem_t; /* this type will represent field elements */
typedef bitvec_t scalar_t;
/******************************************************************************/
/* Here the curve parameters are defined. */
#if defined (ECC_CURVE) && (ECC_CURVE != 0)
#if (ECC_CURVE == NIST_K163)
#define coeff_a 1
#define cofactor 2
/* NIST K-163 */
const gf2elem_t polynomial = { 0x000000c9, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000008 };
const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const gf2elem_t base_x = { 0x5c94eee8, 0xde4e6d5e, 0xaa07d793, 0x7bbc11ac, 0xfe13c053, 0x00000002 };
const gf2elem_t base_y = { 0xccdaa3d9, 0x0536d538, 0x321f2e80, 0x5d38ff58, 0x89070fb0, 0x00000002 };
const scalar_t base_order = { 0x99f8a5ef, 0xa2e0cc0d, 0x00020108, 0x00000000, 0x00000000, 0x00000004 };
#endif
#if (ECC_CURVE == NIST_B163)
#define coeff_a 1
#define cofactor 2
/* NIST B-163 */
const gf2elem_t polynomial = { 0x000000c9, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000008 };
const gf2elem_t coeff_b = { 0x4a3205fd, 0x512f7874, 0x1481eb10, 0xb8c953ca, 0x0a601907, 0x00000002 };
const gf2elem_t base_x = { 0xe8343e36, 0xd4994637, 0xa0991168, 0x86a2d57e, 0xf0eba162, 0x00000003 };
const gf2elem_t base_y = { 0x797324f1, 0xb11c5c0c, 0xa2cdd545, 0x71a0094f, 0xd51fbc6c, 0x00000000 };
const scalar_t base_order = { 0xa4234c33, 0x77e70c12, 0x000292fe, 0x00000000, 0x00000000, 0x00000004 };
#endif
#if (ECC_CURVE == NIST_K233)
#define coeff_a 0
#define cofactor 4
/* NIST K-233 */
const gf2elem_t polynomial = { 0x00000001, 0x00000000, 0x00000400, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200 };
const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const gf2elem_t base_x = { 0xefad6126, 0x0a4c9d6e, 0x19c26bf5, 0x149563a4, 0x29f22ff4, 0x7e731af1, 0x32ba853a, 0x00000172 };
const gf2elem_t base_y = { 0x56fae6a3, 0x56e0c110, 0xf18aeb9b, 0x27a8cd9b, 0x555a67c4, 0x19b7f70f, 0x537dece8, 0x000001db };
const scalar_t base_order = { 0xf173abdf, 0x6efb1ad5, 0xb915bcd4, 0x00069d5b, 0x00000000, 0x00000000, 0x00000000, 0x00000080 };
#endif
#if (ECC_CURVE == NIST_B233)
#define coeff_a 1
#define cofactor 2
/* NIST B-233 */
const gf2elem_t polynomial = { 0x00000001, 0x00000000, 0x00000400, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200 };
const gf2elem_t coeff_b = { 0x7d8f90ad, 0x81fe115f, 0x20e9ce42, 0x213b333b, 0x0923bb58, 0x332c7f8c, 0x647ede6c, 0x00000066 };
const gf2elem_t base_x = { 0x71fd558b, 0xf8f8eb73, 0x391f8b36, 0x5fef65bc, 0x39f1bb75, 0x8313bb21, 0xc9dfcbac, 0x000000fa };
const gf2elem_t base_y = { 0x01f81052, 0x36716f7e, 0xf867a7ca, 0xbf8a0bef, 0xe58528be, 0x03350678, 0x6a08a419, 0x00000100 };
const scalar_t base_order = { 0x03cfe0d7, 0x22031d26, 0xe72f8a69, 0x0013e974, 0x00000000, 0x00000000, 0x00000000, 0x00000100 };
#endif
#if (ECC_CURVE == NIST_K283)
#define coeff_a 0
#define cofactor 4
/* NIST K-283 */
const gf2elem_t polynomial = { 0x000010a1, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x08000000 };
const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const gf2elem_t base_x = { 0x58492836, 0xb0c2ac24, 0x16876913, 0x23c1567a, 0x53cd265f, 0x62f188e5, 0x3f1a3b81, 0x78ca4488, 0x0503213f };
const gf2elem_t base_y = { 0x77dd2259, 0x4e341161, 0xe4596236, 0xe8184698, 0xe87e45c0, 0x07e5426f, 0x8d90f95d, 0x0f1c9e31, 0x01ccda38 };
const scalar_t base_order = { 0x1e163c61, 0x94451e06, 0x265dff7f, 0x2ed07577, 0xffffe9ae, 0xffffffff, 0xffffffff, 0xffffffff, 0x01ffffff };
#endif
#if (ECC_CURVE == NIST_B283)
#define coeff_a 1
#define cofactor 2
/* NIST B-283 */
const gf2elem_t polynomial = { 0x000010a1, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x08000000 };
const gf2elem_t coeff_b = { 0x3b79a2f5, 0xf6263e31, 0xa581485a, 0x45309fa2, 0xca97fd76, 0x19a0303f, 0xa5a4af8a, 0xc8b8596d, 0x027b680a };
const gf2elem_t base_x = { 0x86b12053, 0xf8cdbecd, 0x80e2e198, 0x557eac9c, 0x2eed25b8, 0x70b0dfec, 0xe1934f8c, 0x8db7dd90, 0x05f93925 };
const gf2elem_t base_y = { 0xbe8112f4, 0x13f0df45, 0x826779c8, 0x350eddb0, 0x516ff702, 0xb20d02b4, 0xb98fe6d4, 0xfe24141c, 0x03676854 };
const scalar_t base_order = { 0xefadb307, 0x5b042a7c, 0x938a9016, 0x399660fc, 0xffffef90, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff };
#endif
#if (ECC_CURVE == NIST_K409)
#define coeff_a 0
#define cofactor 4
/* NIST K-409 */
const gf2elem_t polynomial = { 0x00000001, 0x00000000, 0x00800000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x02000000 };
const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const gf2elem_t base_x = { 0xe9023746, 0xb35540cf, 0xee222eb1, 0xb5aaaa62, 0xc460189e, 0xf9f67cc2, 0x27accfb8, 0xe307c84c, 0x0efd0987, 0x0f718421, 0xad3ab189, 0x658f49c1, 0x0060f05f };
const gf2elem_t base_y = { 0xd8e0286b, 0x5863ec48, 0xaa9ca27a, 0xe9c55215, 0xda5f6c42, 0xe9ea10e3, 0xe6325165, 0x918ea427, 0x3460782f, 0xbf04299c, 0xacba1dac, 0x0b7c4e42, 0x01e36905 };
const scalar_t base_order = { 0xe01e5fcf, 0x4b5c83b8, 0xe3e7ca5b, 0x557d5ed3, 0x20400ec4, 0x83b2d4ea, 0xfffffe5f, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x007fffff };
#endif
#if (ECC_CURVE == NIST_B409)
#define coeff_a 1
#define cofactor 2
/* NIST B-409 */
const gf2elem_t polynomial = { 0x00000001, 0x00000000, 0x00800000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x02000000 };
const gf2elem_t coeff_b = { 0x7b13545f, 0x4f50ae31, 0xd57a55aa, 0x72822f6c, 0xa9a197b2, 0xd6ac27c8, 0x4761fa99, 0xf1f3dd67, 0x7fd6422e, 0x3b7b476b, 0x5c4b9a75, 0xc8ee9feb, 0x0021a5c2 };
const gf2elem_t base_x = { 0xbb7996a7, 0x60794e54, 0x5603aeab, 0x8a118051, 0xdc255a86, 0x34e59703, 0xb01ffe5b, 0xf1771d4d, 0x441cde4a, 0x64756260, 0x496b0c60, 0xd088ddb3, 0x015d4860 };
const gf2elem_t base_y = { 0x0273c706, 0x81c364ba, 0xd2181b36, 0xdf4b4f40, 0x38514f1f, 0x5488d08f, 0x0158aa4f, 0xa7bd198d, 0x7636b9c5, 0x24ed106a, 0x2bbfa783, 0xab6be5f3, 0x0061b1cf };
const scalar_t base_order = { 0xd9a21173, 0x8164cd37, 0x9e052f83, 0x5fa47c3c, 0xf33307be, 0xaad6a612, 0x000001e2, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x01000000 };
#endif
#if (ECC_CURVE == NIST_K571)
#define coeff_a 0
#define cofactor 4
/* NIST K-571 */
const gf2elem_t polynomial = { 0x00000425, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x08000000 };
const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const gf2elem_t base_x = { 0xa01c8972, 0xe2945283, 0x4dca88c7, 0x988b4717, 0x494776fb, 0xbbd1ba39, 0xb4ceb08c, 0x47da304d, 0x93b205e6, 0x43709584, 0x01841ca4, 0x60248048, 0x0012d5d4, 0xac9ca297, 0xf8103fe4, 0x82189631, 0x59923fbc, 0x026eb7a8 };
const gf2elem_t base_y = { 0x3ef1c7a3, 0x01cd4c14, 0x591984f6, 0x320430c8, 0x7ba7af1b, 0xb620b01a, 0xf772aedc, 0x4fbebbb9, 0xac44aea7, 0x9d4979c0, 0x006d8a2c, 0xffc61efc, 0x9f307a54, 0x4dd58cec, 0x3bca9531, 0x4f4aeade, 0x7f4fbf37, 0x0349dc80 };
const scalar_t base_order = { 0x637c1001, 0x5cfe778f, 0x1e91deb4, 0xe5d63938, 0xb630d84b, 0x917f4138, 0xb391a8db, 0xf19a63e4, 0x131850e1, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x02000000 };
#endif
#if (ECC_CURVE == NIST_B571)
#define coeff_a 1
#define cofactor 2
/* NIST B-571 */
const gf2elem_t polynomial = { 0x00000425, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x08000000 };
const gf2elem_t coeff_b = { 0x2955727a, 0x7ffeff7f, 0x39baca0c, 0x520e4de7, 0x78ff12aa, 0x4afd185a, 0x56a66e29, 0x2be7ad67, 0x8efa5933, 0x84ffabbd, 0x4a9a18ad, 0xcd6ba8ce, 0xcb8ceff1, 0x5c6a97ff, 0xb7f3d62f, 0xde297117, 0x2221f295, 0x02f40e7e };
const gf2elem_t base_x = { 0x8eec2d19, 0xe1e7769c, 0xc850d927, 0x4abfa3b4, 0x8614f139, 0x99ae6003, 0x5b67fb14, 0xcdd711a3, 0xf4c0d293, 0xbde53950, 0xdb7b2abd, 0xa5f40fc8, 0x955fa80a, 0x0a93d1d2, 0x0d3cd775, 0x6c16c0d4, 0x34b85629, 0x0303001d };
const gf2elem_t base_y = { 0x1b8ac15b, 0x1a4827af, 0x6e23dd3c, 0x16e2f151, 0x0485c19b, 0xb3531d2f, 0x461bb2a8, 0x6291af8f, 0xbab08a57, 0x84423e43, 0x3921e8a6, 0x1980f853, 0x009cbbca, 0x8c6c27a6, 0xb73d69d7, 0x6dccfffe, 0x42da639b, 0x037bf273 };
const scalar_t base_order = { 0x2fe84e47, 0x8382e9bb, 0x5174d66e, 0x161de93d, 0xc7dd9ca1, 0x6823851e, 0x08059b18, 0xff559873, 0xe661ce18, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff };
#endif
#endif
/*************************************************************************************************/
/* Private / static functions: */
/* some basic bit-manipulation routines that act on bit-vectors follow */
static int bitvec_get_bit(const bitvec_t x, const uint32_t idx)
{
return ((x[idx / 32U] >> (idx & 31U) & 1U));
}
static void bitvec_clr_bit(bitvec_t x, const uint32_t idx)
{
x[idx / 32U] &= ~(1U << (idx & 31U));
}
static void bitvec_copy(bitvec_t x, const bitvec_t y)
{
int i;
for (i = 0; i < BITVEC_NWORDS; ++i)
{
x[i] = y[i];
}
}
static void bitvec_swap(bitvec_t x, bitvec_t y)
{
bitvec_t tmp;
bitvec_copy(tmp, x);
bitvec_copy(x, y);
bitvec_copy(y, tmp);
}
#if defined(CONST_TIME) && (CONST_TIME == 0)
/* fast version of equality test */
static int bitvec_equal(const bitvec_t x, const bitvec_t y)
{
int i;
for (i = 0; i < BITVEC_NWORDS; ++i)
{
if (x[i] != y[i])
{
return 0;
}
}
return 1;
}
#else
/* constant time version of equality test */
static int bitvec_equal(const bitvec_t x, const bitvec_t y)
{
int ret = 1;
int i;
for (i = 0; i < BITVEC_NWORDS; ++i)
{
ret &= (x[i] == y[i]);
}
return ret;
}
#endif
static void bitvec_set_zero(bitvec_t x)
{
int i;
for (i = 0; i < BITVEC_NWORDS; ++i)
{
x[i] = 0;
}
}
#if defined(CONST_TIME) && (CONST_TIME == 0)
/* fast implementation */
static int bitvec_is_zero(const bitvec_t x)
{
uint32_t i = 0;
while (i < BITVEC_NWORDS)
{
if (x[i] != 0)
{
break;
}
i += 1;
}
return (i == BITVEC_NWORDS);
}
#else
/* constant-time implementation */
static int bitvec_is_zero(const bitvec_t x)
{
int ret = 1;
int i = 0;
for (i = 0; i < BITVEC_NWORDS; ++i)
{
ret &= (x[i] == 0);
}
return ret;
}
#endif
/* return the number of the highest one-bit + 1 */
static int bitvec_degree(const bitvec_t x)
{
int i = BITVEC_NWORDS * 32;
/* Start at the back of the vector (MSB) */
x += BITVEC_NWORDS;
/* Skip empty / zero words */
while ( (i > 0)
&& (*(--x)) == 0)
{
i -= 32;
}
/* Run through rest if count is not multiple of bitsize of DTYPE */
if (i != 0)
{
uint32_t u32mask = ((uint32_t)1 << 31);
while (((*x) & u32mask) == 0)
{
u32mask >>= 1;
i -= 1;
}
}
return i;
}
/* left-shift by 'count' digits */
static void bitvec_lshift(bitvec_t x, const bitvec_t y, int nbits)
{
int nwords = (nbits / 32);
/* Shift whole words first if nwords > 0 */
int i,j;
for (i = 0; i < nwords; ++i)
{
/* Zero-initialize from least-significant word until offset reached */
x[i] = 0;
}
j = 0;
/* Copy to x output */
while (i < BITVEC_NWORDS)
{
x[i] = y[j];
i += 1;
j += 1;
}
/* Shift the rest if count was not multiple of bitsize of DTYPE */
nbits &= 31;
if (nbits != 0)
{
/* Left shift rest */
int i;
for (i = (BITVEC_NWORDS - 1); i > 0; --i)
{
x[i] = (x[i] << nbits) | (x[i - 1] >> (32 - nbits));
}
x[0] <<= nbits;
}
}
/*************************************************************************************************/
/*
Code that does arithmetic on bit-vectors in the Galois Field GF(2^CURVE_DEGREE).
*/
/*************************************************************************************************/
static void gf2field_set_one(gf2elem_t x)
{
/* Set first word to one */
x[0] = 1;
/* .. and the rest to zero */
int i;
for (i = 1; i < BITVEC_NWORDS; ++i)
{
x[i] = 0;
}
}
#if defined(CONST_TIME) && (CONST_TIME == 0)
/* fastest check if x == 1 */
static int gf2field_is_one(const gf2elem_t x)
{
/* Check if first word == 1 */
if (x[0] != 1)
{
return 0;
}
/* ...and if rest of words == 0 */
int i;
for (i = 1; i < BITVEC_NWORDS; ++i)
{
if (x[i] != 0)
{
break;
}
}
return (i == BITVEC_NWORDS);
}
#else
/* constant-time check */
static int gf2field_is_one(const gf2elem_t x)
{
int ret = 0;
/* Check if first word == 1 */
if (x[0] == 1)
{
ret = 1;
}
/* ...and if rest of words == 0 */
int i;
for (i = 1; i < BITVEC_NWORDS; ++i)
{
ret &= (x[i] == 0);
}
return ret; //(i == BITVEC_NWORDS);
}
#endif
/* galois field(2^m) addition is modulo 2, so XOR is used instead - 'z := a + b' */
static void gf2field_add(gf2elem_t z, const gf2elem_t x, const gf2elem_t y)
{
int i;
for (i = 0; i < BITVEC_NWORDS; ++i)
{
z[i] = (x[i] ^ y[i]);
}
}
/* increment element */
static void gf2field_inc(gf2elem_t x)
{
x[0] ^= 1;
}
/* field multiplication 'z := (x * y)' */
static void gf2field_mul(gf2elem_t z, const gf2elem_t x, const gf2elem_t y)
{
int i;
gf2elem_t tmp;
#if defined(CONST_TIME) && (CONST_TIME == 1)
gf2elem_t blind;
bitvec_set_zero(blind);
#endif
assert(z != y);
bitvec_copy(tmp, x);
/* LSB set? Then start with x */
if (bitvec_get_bit(y, 0) != 0)
{
bitvec_copy(z, x);
}
else /* .. or else start with zero */
{
bitvec_set_zero(z);
}
/* Then add 2^i * x for the rest */
for (i = 1; i < CURVE_DEGREE; ++i)
{
/* lshift 1 - doubling the value of tmp */
bitvec_lshift(tmp, tmp, 1);
/* Modulo reduction polynomial if degree(tmp) > CURVE_DEGREE */
if (bitvec_get_bit(tmp, CURVE_DEGREE))
{
gf2field_add(tmp, tmp, polynomial);
}
#if defined(CONST_TIME) && (CONST_TIME == 1)
else /* blinding operation */
{
gf2field_add(tmp, tmp, blind);
}
#endif
/* Add 2^i * tmp if this factor in y is non-zero */
if (bitvec_get_bit(y, i))
{
gf2field_add(z, z, tmp);
}
#if defined(CONST_TIME) && (CONST_TIME == 1)
else /* blinding operation */
{
gf2field_add(z, z, blind);
}
#endif
}
}
/* field inversion 'z := 1/x' */
static void gf2field_inv(gf2elem_t z, const gf2elem_t x)
{
gf2elem_t u, v, g, h;
int i;
bitvec_copy(u, x);
bitvec_copy(v, polynomial);
bitvec_set_zero(g);
gf2field_set_one(z);
while (!gf2field_is_one(u))
{
i = (bitvec_degree(u) - bitvec_degree(v));
if (i < 0)
{
bitvec_swap(u, v);
bitvec_swap(g, z);
i = -i;
}
#if defined(CONST_TIME) && (CONST_TIME == 1)
else
{
bitvec_swap(u, v);
bitvec_swap(v, u);
}
#endif
bitvec_lshift(h, v, i);
gf2field_add(u, u, h);
bitvec_lshift(h, g, i);
gf2field_add(z, z, h);
}
}
/*************************************************************************************************/
/*
The following code takes care of Galois-Field arithmetic.
Elliptic curve points are represented by pairs (x,y) of bitvec_t.
It is assumed that curve coefficient 'a' is {0,1}
This is the case for all NIST binary curves.
Coefficient 'b' is given in 'coeff_b'.
'(base_x, base_y)' is a point that generates a large prime order group.
*/
/*************************************************************************************************/
static void gf2point_copy(gf2elem_t x1, gf2elem_t y1, const gf2elem_t x2, const gf2elem_t y2)
{
bitvec_copy(x1, x2);
bitvec_copy(y1, y2);
}
static void gf2point_set_zero(gf2elem_t x, gf2elem_t y)
{
bitvec_set_zero(x);
bitvec_set_zero(y);
}
static int gf2point_is_zero(const gf2elem_t x, const gf2elem_t y)
{
return ( bitvec_is_zero(x)
&& bitvec_is_zero(y));
}
/* double the point (x,y) */
static void gf2point_double(gf2elem_t x, gf2elem_t y)
{
/* iff P = O (zero or infinity): 2 * P = P */
if (bitvec_is_zero(x))
{
bitvec_set_zero(y);
}
else
{
gf2elem_t l;
gf2field_inv(l, x);
gf2field_mul(l, l, y);
gf2field_add(l, l, x);
gf2field_mul(y, x, x);
gf2field_mul(x, l, l);
#if (coeff_a == 1)
gf2field_inc(l);
#endif
gf2field_add(x, x, l);
gf2field_mul(l, l, x);
gf2field_add(y, y, l);
}
}
/* add two points together (x1, y1) := (x1, y1) + (x2, y2) */
static void gf2point_add(gf2elem_t x1, gf2elem_t y1, const gf2elem_t x2, const gf2elem_t y2)
{
if (!gf2point_is_zero(x2, y2))
{
if (gf2point_is_zero(x1, y1))
{
gf2point_copy(x1, y1, x2, y2);
}
else
{
if (bitvec_equal(x1, x2))
{
if (bitvec_equal(y1, y2))
{
gf2point_double(x1, y1);
}
else
{
gf2point_set_zero(x1, y1);
}
}
else
{
/* Arithmetic with temporary variables */
gf2elem_t a, b, c, d;
gf2field_add(a, y1, y2);
gf2field_add(b, x1, x2);
gf2field_inv(c, b);
gf2field_mul(c, c, a);
gf2field_mul(d, c, c);
gf2field_add(d, d, c);
gf2field_add(d, d, b);
#if (coeff_a == 1)
gf2field_inc(d);
#endif
gf2field_add(x1, x1, d);
gf2field_mul(a, x1, c);
gf2field_add(a, a, d);
gf2field_add(y1, y1, a);
bitvec_copy(x1, d);
}
}
}
}
#if defined(CONST_TIME) && (CONST_TIME == 0)
/* point multiplication via double-and-add algorithm */
static void gf2point_mul(gf2elem_t x, gf2elem_t y, const scalar_t exp)
{
gf2elem_t tmpx, tmpy;
int i;
int nbits = bitvec_degree(exp);
gf2point_set_zero(tmpx, tmpy);
for (i = (nbits - 1); i >= 0; --i)
{
gf2point_double(tmpx, tmpy);
if (bitvec_get_bit(exp, i))
{
gf2point_add(tmpx, tmpy, x, y);
}
}
gf2point_copy(x, y, tmpx, tmpy);
}
#else
/* point multiplication via double-and-add-always algorithm using scalar blinding */
static void gf2point_mul(gf2elem_t x, gf2elem_t y, const scalar_t exp)
{
gf2elem_t tmpx, tmpy;
gf2elem_t dummyx, dummyy;
int i;
int nbits = bitvec_degree(exp);
gf2point_set_zero(tmpx, tmpy);
gf2point_set_zero(dummyx, dummyy);
for (i = (nbits - 1); i >= 0; --i)
{
gf2point_double(tmpx, tmpy);
/* Add point if bit(i) is set in exp */
if (bitvec_get_bit(exp, i))
{
gf2point_add(tmpx, tmpy, x, y);
}
/* .. or add the neutral element to keep operation constant-time */
else
{
gf2point_add(tmpx, tmpy, dummyx, dummyy);
}
}
gf2point_copy(x, y, tmpx, tmpy);
}
#endif
/* check if y^2 + x*y = x^3 + a*x^2 + coeff_b holds */
static int gf2point_on_curve(const gf2elem_t x, const gf2elem_t y)
{
gf2elem_t a, b;
if (gf2point_is_zero(x, y))
{
return 1;
}
else
{
gf2field_mul(a, x, x);
#if (coeff_a == 0)
gf2field_mul(a, a, x);
#else
gf2field_mul(b, a, x);
gf2field_add(a, a, b);
#endif
gf2field_add(a, a, coeff_b);
gf2field_mul(b, y, y);
gf2field_add(a, a, b);
gf2field_mul(b, x, y);
return bitvec_equal(a, b);
}
}
/*************************************************************************************************/
/*
Elliptic Curve Diffie-Hellman key exchange protocol.
*/
/*************************************************************************************************/
/* NOTE: private should contain random data a-priori! */
int ecdh_generate_keys(uint8_t* public_key, uint8_t* private_key)
{
/* Get copy of "base" point 'G' */
gf2point_copy((uint32_t*)public_key, (uint32_t*)(public_key + BITVEC_NBYTES), base_x, base_y);
/* Abort key generation if random number is too small */
if (bitvec_degree((uint32_t*)private_key) < (CURVE_DEGREE / 2))
{
return 0;
}
else
{
/* Clear bits > CURVE_DEGREE in highest word to satisfy constraint 1 <= exp < n. */
int nbits = bitvec_degree(base_order);
int i;
for (i = (nbits - 1); i < (BITVEC_NWORDS * 32); ++i)
{
bitvec_clr_bit((uint32_t*)private_key, i);
}
/* Multiply base-point with scalar (private-key) */
gf2point_mul((uint32_t*)public_key, (uint32_t*)(public_key + BITVEC_NBYTES), (uint32_t*)private_key);
return 1;
}
}
int ecdh_shared_secret(const uint8_t* private_key, const uint8_t* others_pub, uint8_t* output)
{
/* Do some basic validation of other party's public key */
if ( !gf2point_is_zero ((uint32_t*)others_pub, (uint32_t*)(others_pub + BITVEC_NBYTES))
&& gf2point_on_curve((uint32_t*)others_pub, (uint32_t*)(others_pub + BITVEC_NBYTES)) )
{
/* Copy other side's public key to output */
unsigned int i;
for (i = 0; i < (BITVEC_NBYTES * 2); ++i)
{
output[i] = others_pub[i];
}
/* Multiply other side's public key with own private key */
gf2point_mul((uint32_t*)output,(uint32_t*)(output + BITVEC_NBYTES), (const uint32_t*)private_key);
/* Multiply outcome by cofactor if using ECC CDH-variant: */
#if defined(ECDH_COFACTOR_VARIANT) && (ECDH_COFACTOR_VARIANT == 1)
#if (cofactor == 2)
gf2point_double((uint32_t*)output, (uint32_t*)(output + BITVEC_NBYTES));
#elif (cofactor == 4)
gf2point_double((uint32_t*)output, (uint32_t*)(output + BITVEC_NBYTES));
gf2point_double((uint32_t*)output, (uint32_t*)(output + BITVEC_NBYTES));
#endif
#endif
return 1;
}
else
{
return 0;
}
}
/* ECDSA is broken :( ... */
int ecdsa_sign(const uint8_t* private_key, uint8_t* hash, uint8_t* random_k, uint8_t* signature)
{
/*
1) calculate e = HASH(m)
2) let z be the Ln leftmost bits of e, where Ln is the bit length of the group order n
3) Select a cryptographically secure random integer k from [1, n-1]
4) Calculate the curve point (x1, y1) = k * G
5) Calculate r = x1 mod n - if (r == 0) goto 3
6) Calculate s = inv(k) * (z + r * d) mod n - if (s == 0) goto 3
7) The signature is the pair (r, s)
*/
assert(private_key != 0);
assert(hash != 0);
assert(random_k != 0);
assert(signature != 0);
int success = 0;
if ( (bitvec_degree((uint32_t*)private_key) >= (CURVE_DEGREE / 2))
&& !bitvec_is_zero((uint32_t*)random_k) )
{
gf2elem_t r, s, z, k;
bitvec_set_zero(r);
bitvec_set_zero(s);
bitvec_copy(z, (uint32_t*)hash);
/* 1 + 2 */
int nbits = bitvec_degree(base_order);
int i;
for (i = (nbits - 1); i < BITVEC_NBITS; ++i)
{
bitvec_clr_bit(z, i);
}
/* 3 */
bitvec_copy(k, (uint32_t*)random_k);
/* 4 */
gf2point_copy(r, s, base_x, base_y);
gf2point_mul(r, s, k);
/* 5 */
if (!bitvec_is_zero(r))
{
/* 6) s = inv(k) * (z + (r * d)) mod n ==> if (s == 0) goto 3 **/
gf2field_inv(s, k); /* s = inv(k) */
gf2field_mul(r, r, (uint32_t*)private_key); /* r = (r * d) */
gf2field_add(r, r, z); /* r = z + (r * d) */
nbits = bitvec_degree(r); /* r = r mod n */
for (i = (nbits - 1); i < BITVEC_NBITS; ++i)
{
printf("reduction r\n");
bitvec_clr_bit(r, i);
}
gf2field_mul(s, s, r); /* s = inv(k) * (z * (r * d)) */
nbits = bitvec_degree(s); /* s = s mod n */
for (i = (nbits - 1); i < BITVEC_NBITS; ++i)
{
printf("reduction s\n");
bitvec_clr_bit(s, i);
}
if (!bitvec_is_zero(s))
{
bitvec_copy((uint32_t*)signature, r);
bitvec_copy((uint32_t*)(signature + ECC_PRV_KEY_SIZE), s);
success = 1;
}
}
}
return success;
}
int ecdsa_verify(const uint8_t* public_key, uint8_t* hash, const uint8_t* signature)
{
/*
1) Verify that (r,s) are in [1, n-1]
2) e = HASH(m)
3) z = Ln leftmost bits of e
4) w = inv(s) mod n
5) u1 = (z * w) mod n
u2 = (r * w) mod n
6) (x,y) = (u1 * G) + (u2 * public)
7) Signature is valid if r == x mod n && (x,y) != (0,0)
*/
assert(public_key != 0);
assert(hash != 0);
assert(signature != 0);
int success = 0;
gf2elem_t r, s;
bitvec_copy(r, (uint32_t*)(signature));
bitvec_copy(s, (uint32_t*)(signature + ECC_PRV_KEY_SIZE));
if ( !bitvec_is_zero(s)
&& !bitvec_is_zero(r))
{
gf2elem_t x1, y1, u1, u2, w, z;
/* 3) z = Ln leftmost bits of e */
bitvec_copy(z, (uint32_t*)hash); /* r,s,z are set */
uint32_t nbits = bitvec_degree(base_order);
uint32_t i;
for (i = (nbits - 1); i < BITVEC_NBITS; ++i)
{
bitvec_clr_bit(z, i);
}
/* 4) w = inv(s) mod n */
gf2field_inv(w, s); /* w = inv(s) */
/* Modulo reduction polynomial if degree(tmp) > CURVE_DEGREE */
if (bitvec_get_bit(w, CURVE_DEGREE))
{
printf("reduction on w\n");
gf2field_add(w, w, polynomial);
}
/* 5) u1 = zw mod n, u2 = rw mod n*/
gf2field_mul(u1, z, w); /* u1 = z * w */
/* Modulo reduction polynomial if degree(tmp) > CURVE_DEGREE */
if (bitvec_get_bit(u1, CURVE_DEGREE))
{
printf("reduction on u1\n");
gf2field_add(u1, u1, polynomial);
}
gf2field_mul(u2, r, w); /* u2 = r * w */
/* Modulo reduction polynomial if degree(tmp) > CURVE_DEGREE */
if (bitvec_get_bit(u2, CURVE_DEGREE))
{
printf("reduction on u2\n");
gf2field_add(u2, u2, polynomial);
}
/* 6) (x,y) = (u1 * G) + (u2 * public) */
bitvec_copy(x1, base_x);
bitvec_copy(y1, base_y);
gf2field_mul(u1, x1, y1); /* u1 * G */
bitvec_copy(w, (uint32_t*)(public_key));
bitvec_copy(z, (uint32_t*)(public_key + ECC_PRV_KEY_SIZE));
gf2field_mul(u2, w, z); /* u2 * Q */
gf2point_add(x1, y1, w, z);
if (bitvec_get_bit(x1, CURVE_DEGREE))
{
printf("reduction on x1\n");
gf2field_add(x1, x1, polynomial);
}
success = bitvec_equal(r, x1);
if (!success)
{
printf("x = '");
for (i = 0; i < BITVEC_NWORDS; ++i)
{
printf("%.08x", x1[i]);
}
printf("' [%u]\n", i);
printf("r = '");
for (i = 0; i < BITVEC_NWORDS; ++i)
{
printf("%.08x", r[i]);
}
printf("' [%u]\n", i);
}
}
else
{
printf("(s or r) == zero\n");
}
return success;
}