forked from soft-nougat/dqw-ivves
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions.py
359 lines (303 loc) · 11.4 KB
/
helper_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import json
import streamlit as st
import pandas as pd
import base64
import streamlit.components.v1 as components
from PIL import Image
import pandas as pd
import pycaret as pyc
import io
from PIL import Image
from pprint import pprint
from zipfile import ZipFile
import os
from os.path import basename
from image_eda.augment import apply_augmentations
def app_section_button(option1, option2, option3, option4):
col1, col2, col3, col4 = st.columns(4)
with col1:
# current page
col1.markdown(option1)
with col2:
st.markdown(option2, unsafe_allow_html=True)
with col3:
st.markdown(option3, unsafe_allow_html=True)
with col4:
st.markdown(option4, unsafe_allow_html=True)
def app_meta(icon):
# Set website details
st.set_page_config(page_title ="Data Quality Wrapper",
page_icon=icon,
layout='centered')
# set sidebar width
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 300px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 300px;
margin-left: -300px;
}
</style>
""",
unsafe_allow_html=True,
)
def set_bg_hack(main_bg):
'''
A function to unpack an image from root folder and set as bg.
The bg will be static and won't take resolution of device into account.
Returns
-------
The background.
'''
# set bg name
main_bg_ext = "png"
st.markdown(
f"""
<style>
.stApp {{
background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
background-size: cover
}}
</style>
""",
unsafe_allow_html=True
)
# set background, use base64 to read local file
def get_base64_of_bin_file(bin_file):
"""
function to read png file
----------
bin_file: png -> the background image in local folder
"""
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
def set_png_as_page_bg(png_file):
"""
function to display png as bg
----------
png_file: png -> the background image in local folder
"""
bin_str = get_base64_of_bin_file(png_file)
page_bg_img = '''
<style>
st.App {
background-image: url("data:image/png;base64,%s");
background-size: cover;
}
</style>
''' % bin_str
st.markdown(page_bg_img, unsafe_allow_html=True)
return
# display app header and sidebar
# use HTML code to set div
def display_app_header(main_txt,sub_txt,is_sidebar = False):
"""
function to display major headers at user interface
----------
main_txt: str -> the major text to be displayed
sub_txt: str -> the minor text to be displayed
is_sidebar: bool -> check if its side panel or major panel
"""
html_temp = f"""
<h2 style = "color:#F74369; text_align:center; font-weight: bold;"> {main_txt} </h2>
<p style = "color:#BB1D3F; text_align:center;"> {sub_txt} </p>
</div>
"""
if is_sidebar:
st.sidebar.markdown(html_temp, unsafe_allow_html = True)
else:
st.markdown(html_temp, unsafe_allow_html = True)
def display_app_header_1(sub_txt,is_sidebar = False):
"""
function to display major headers at user interface
----------
main_txt: str -> the major text to be displayed
sub_txt: str -> the minor text to be displayed
is_sidebar: bool -> check if its side panel or major panel
"""
html_temp = f"""
<p style = "color:#BB1D3F; text_align:center;"> {sub_txt} </p>
</div>
"""
if is_sidebar:
st.sidebar.markdown(html_temp, unsafe_allow_html = True)
else:
st.markdown(html_temp, unsafe_allow_html = True)
def get_input(data_input_mthd,ss_text,is_batch=False,text_column = "text"):
"""
function get input from user either by uploading a csv file, pasting text
or importing json files
----------
ss_text: string
is_batch: bool
text_column: str -> the columnn name for creating pd.DataFrame is _is_batch is False
"""
if 'CSV' in data_input_mthd:
uploaded_file = st.file_uploader("Choose a csv file to analyse", type="csv")
if uploaded_file is not None:
st.success('File upload successful')
df = pd.read_csv(uploaded_file)
return df,ss_text
else:
st.info('Please upload a csv file')
return pd.DataFrame(),ss_text
elif 'Copy-Paste text' in data_input_mthd:
ss_text = st.text_area("Type in text to analyse", ss_text)
df = pd.DataFrame(data=[ss_text],columns=[text_column])
return df,ss_text
elif 'json' in data_input_mthd:
uploaded_file = st.file_uploader("Choose a json file to analyse",
type = "json")
if uploaded_file is not None:
st.success('File upload successful')
data = json.load(uploaded_file)
df = pd.json_normalize(data)
#df = pd.read_json(uploaded_file)
return df,ss_text
else:
st.info('Please upload a json file')
return pd.DataFrame(),ss_text
def check_input_method(data_input_mthd):
"""
function check user input method if uploading or pasting or using
a json file
Parameters
----------
data_input_mthd: str -> the default displayed text for decision making
"""
# ----------------------------------------------
# session state init
st.session_state['is_file_uploaded'] = False
st.session_state['is_batch_process'] = False
st.session_state['txt'] = 'Paste the text to analyze here'
if 'Copy-Paste text' in data_input_mthd:
df, st.session_state.txt = get_input(data_input_mthd,
ss_text= st.session_state.txt)
elif 'CSV' in data_input_mthd:
df,st.session_state.txt= get_input(data_input_mthd,
ss_text= st.session_state.txt,
is_batch=True)
if df.shape[0]>0:
st.session_state.is_batch_process = True
st.session_state.is_file_uploaded = True
elif 'json' in data_input_mthd:
df,st.session_state.txt= get_input(data_input_mthd,
ss_text= st.session_state.txt,
is_batch=True)
if df.shape[0]>0:
st.session_state.is_batch_process = True
st.session_state.is_file_uploaded = True
return df,st.session_state.txt
def load_images():
data = st.sidebar.file_uploader("Upload image dataset",
type=['png', 'jpg', 'jpeg'],
accept_multiple_files=True)
if data:
images = []
augmentations = get_augmentations()
for image_file in data:
file_details = {"None": None, "File name":image_file.name, "File type":image_file.type, "File size":image_file.size}
image = Image.open(image_file)
images.append((file_details, image))
images = apply_augmentations(images, augmentations)
return images
def _get_default_augmentations() -> dict:
augmentations = {
'resize': {
'width': None,
'height': None
},
'grayscale': False,
'contrast': {'value':None},
'brightness': {'value':None},
'sharpness': {'value':None},
'color': {'value':None},
'denoise': False,
}
return augmentations
def get_augmentations() -> dict:
if 'augmentations' not in st.session_state:
st.session_state.augmentations = _get_default_augmentations()
return st.session_state.augmentations
def update_augmentations(augmentations) -> None:
st.session_state.augmentations = augmentations
def _file_process_in_memory(images):
""" Converts PIL image objects into BytesIO in-memory bytes buffers. """
new_images = []
for image_name, pil_image in images:
file_object = io.BytesIO()
pil_image.save(file_object, "PNG")
pil_image.close()
new_images.append((image_name, file_object))
return new_images
def export(images):
images = _file_process_in_memory(images)
# Create an in-memory zip file from the in-memory image file data.
zip_file_bytes_io = io.BytesIO()
with ZipFile(zip_file_bytes_io, 'w') as zip_file:
for image_name, bytes_stream in images:
zip_file.writestr(image_name["File name"]+".png", bytes_stream.getvalue())
name = st.sidebar.text_input("File name", value="My augmented dataset")
st.sidebar.download_button('Download Zip', zip_file_bytes_io.getvalue(), file_name=f'{name}.zip')
def generate_zip_structured(original, comparison):
""" A function to write files to disk and zip 'em """
original.to_csv('pdf_files/synthetic_data/reference_file_dqw.csv',
index=False)
comparison.to_csv('pdf_files/synthetic_data/comparison_file_dqw.csv',
index=False)
# create a ZipFile object
zipObj = ZipFile('pdf_files/synthetic_data/report_files_dqw.zip', 'w')
# Add multiple files to the zip
zipObj.write('pdf_files/synthetic_data/reference_file_dqw.csv')
zipObj.write('pdf_files/synthetic_data/comparison_file_dqw.csv')
zipObj.write('pdf_files/synthetic_data/table-evaluator_comparison_dqw.pdf')
# close the Zip File
zipObj.close()
def generate_zip_pp(original, X, X_train, X_test, y, y_train, y_test):
""" A function to write pycaret files to disk and zip 'em """
original.to_csv('pdf_files/preprocessed_data/original_file.csv', index=False)
if y is not None:
X.to_csv('pdf_files/preprocessed_data/transformed_file.csv', index=False)
X_train.to_csv('pdf_files/preprocessed_data/x_train.csv', index=False)
X_test.to_csv('pdf_files/preprocessed_data/x_test.csv', index=False)
y.to_csv('pdf_files/preprocessed_data/labels.csv', index=False)
y_train.to_csv('pdf_files/preprocessed_data/y_train.csv', index=False)
y_test.to_csv('pdf_files/preprocessed_data/y_test.csv', index=False)
else:
X.to_csv('pdf_files/preprocessed_data/transformed_file.csv', index=False)
# create a ZipFile object
dirName = "pdf_files/preprocessed_data"
with ZipFile('pdf_files/preprocessed_data.zip', 'w') as zipObj:
# Iterate over all the files in directory
for folderName, subfolders, filenames in os.walk(dirName):
for filename in filenames:
#create complete filepath of file in directory
filePath = os.path.join(folderName, filename)
# Add file to zip
zipObj.write(filePath, basename(filePath))
def sub_text(text):
'''
A function to neatly display text in app.
Parameters
----------
text : Just plain text.
Returns
-------
Text defined by html5 code below.
'''
html_temp = f"""
<p style = "color:#1F4E79; text_align:justify;"> {text} </p>
</div>
"""
st.markdown(html_temp, unsafe_allow_html = True)
def open_html(file_name, height, width):
"""
Open a local html file with streamlit components
"""
pipe = open(file_name, 'r', encoding='utf-8')
source_code = pipe.read()
components.html(source_code, height = height, width = width, scrolling=True)