diff --git a/train_db.py b/train_db.py index 1de504ed8..e9f8f9f8c 100644 --- a/train_db.py +++ b/train_db.py @@ -271,7 +271,7 @@ def train(args): accelerator.print( f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}" ) - accelerator.print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") + accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") diff --git a/train_textual_inversion.py b/train_textual_inversion.py index 10fce2677..cbb6daaa2 100644 --- a/train_textual_inversion.py +++ b/train_textual_inversion.py @@ -490,7 +490,7 @@ def train(self, args): accelerator.print( f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}" ) - accelerator.print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") + accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") diff --git a/train_textual_inversion_XTI.py b/train_textual_inversion_XTI.py index ddd03d532..55b670355 100644 --- a/train_textual_inversion_XTI.py +++ b/train_textual_inversion_XTI.py @@ -387,7 +387,7 @@ def train(args): logger.info( f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}" ) - logger.info(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") + logger.info(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") logger.info(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")