-
Notifications
You must be signed in to change notification settings - Fork 910
/
flux_minimal_inference.py
576 lines (492 loc) · 19.5 KB
/
flux_minimal_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Minimum Inference Code for FLUX
import argparse
import datetime
import math
import os
import random
from typing import Callable, List, Optional
import einops
import numpy as np
import torch
from tqdm import tqdm
from PIL import Image
import accelerate
from transformers import CLIPTextModel
from safetensors.torch import load_file
from library import device_utils
from library.device_utils import init_ipex, get_preferred_device
from networks import oft_flux
init_ipex()
from library.utils import setup_logging, str_to_dtype
setup_logging()
import logging
logger = logging.getLogger(__name__)
import networks.lora_flux as lora_flux
from library import flux_models, flux_utils, sd3_utils, strategy_flux
def time_shift(mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model: flux_models.Flux,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
timesteps: list[float],
guidance: float = 4.0,
t5_attn_mask: Optional[torch.Tensor] = None,
neg_txt: Optional[torch.Tensor] = None,
neg_vec: Optional[torch.Tensor] = None,
neg_t5_attn_mask: Optional[torch.Tensor] = None,
cfg_scale: Optional[float] = None,
):
# this is ignored for schnell
logger.info(f"guidance: {guidance}, cfg_scale: {cfg_scale}")
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
# prepare classifier free guidance
if neg_txt is not None and neg_vec is not None:
b_img_ids = torch.cat([img_ids, img_ids], dim=0)
b_txt_ids = torch.cat([txt_ids, txt_ids], dim=0)
b_txt = torch.cat([neg_txt, txt], dim=0)
b_vec = torch.cat([neg_vec, vec], dim=0)
if t5_attn_mask is not None and neg_t5_attn_mask is not None:
b_t5_attn_mask = torch.cat([neg_t5_attn_mask, t5_attn_mask], dim=0)
else:
b_t5_attn_mask = None
else:
b_img_ids = img_ids
b_txt_ids = txt_ids
b_txt = txt
b_vec = vec
b_t5_attn_mask = t5_attn_mask
for t_curr, t_prev in zip(tqdm(timesteps[:-1]), timesteps[1:]):
t_vec = torch.full((b_img_ids.shape[0],), t_curr, dtype=img.dtype, device=img.device)
# classifier free guidance
if neg_txt is not None and neg_vec is not None:
b_img = torch.cat([img, img], dim=0)
else:
b_img = img
pred = model(
img=b_img,
img_ids=b_img_ids,
txt=b_txt,
txt_ids=b_txt_ids,
y=b_vec,
timesteps=t_vec,
guidance=guidance_vec,
txt_attention_mask=b_t5_attn_mask,
)
# classifier free guidance
if neg_txt is not None and neg_vec is not None:
pred_uncond, pred = torch.chunk(pred, 2, dim=0)
pred = pred_uncond + cfg_scale * (pred - pred_uncond)
img = img + (t_prev - t_curr) * pred
return img
def do_sample(
accelerator: Optional[accelerate.Accelerator],
model: flux_models.Flux,
img: torch.Tensor,
img_ids: torch.Tensor,
l_pooled: torch.Tensor,
t5_out: torch.Tensor,
txt_ids: torch.Tensor,
num_steps: int,
guidance: float,
t5_attn_mask: Optional[torch.Tensor],
is_schnell: bool,
device: torch.device,
flux_dtype: torch.dtype,
neg_l_pooled: Optional[torch.Tensor] = None,
neg_t5_out: Optional[torch.Tensor] = None,
neg_t5_attn_mask: Optional[torch.Tensor] = None,
cfg_scale: Optional[float] = None,
):
logger.info(f"num_steps: {num_steps}")
timesteps = get_schedule(num_steps, img.shape[1], shift=not is_schnell)
# denoise initial noise
if accelerator:
with accelerator.autocast(), torch.no_grad():
x = denoise(
model,
img,
img_ids,
t5_out,
txt_ids,
l_pooled,
timesteps,
guidance,
t5_attn_mask,
neg_t5_out,
neg_l_pooled,
neg_t5_attn_mask,
cfg_scale,
)
else:
with torch.autocast(device_type=device.type, dtype=flux_dtype), torch.no_grad():
x = denoise(
model,
img,
img_ids,
t5_out,
txt_ids,
l_pooled,
timesteps,
guidance,
t5_attn_mask,
neg_t5_out,
neg_l_pooled,
neg_t5_attn_mask,
cfg_scale,
)
return x
def generate_image(
model,
clip_l: CLIPTextModel,
t5xxl,
ae,
prompt: str,
seed: Optional[int],
image_width: int,
image_height: int,
steps: Optional[int],
guidance: float,
negative_prompt: Optional[str],
cfg_scale: float,
):
seed = seed if seed is not None else random.randint(0, 2**32 - 1)
logger.info(f"Seed: {seed}")
# make first noise with packed shape
# original: b,16,2*h//16,2*w//16, packed: b,h//16*w//16,16*2*2
packed_latent_height, packed_latent_width = math.ceil(image_height / 16), math.ceil(image_width / 16)
noise_dtype = torch.float32 if is_fp8(dtype) else dtype
noise = torch.randn(
1,
packed_latent_height * packed_latent_width,
16 * 2 * 2,
device=device,
dtype=noise_dtype,
generator=torch.Generator(device=device).manual_seed(seed),
)
# prepare img and img ids
# this is needed only for img2img
# img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
# if img.shape[0] == 1 and bs > 1:
# img = repeat(img, "1 ... -> bs ...", bs=bs)
# txt2img only needs img_ids
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width)
# prepare fp8 models
if is_fp8(clip_l_dtype) and (not hasattr(clip_l, "fp8_prepared") or not clip_l.fp8_prepared):
logger.info(f"prepare CLIP-L for fp8: set to {clip_l_dtype}, set embeddings to {torch.bfloat16}")
clip_l.to(clip_l_dtype) # fp8
clip_l.text_model.embeddings.to(dtype=torch.bfloat16)
clip_l.fp8_prepared = True
if is_fp8(t5xxl_dtype) and (not hasattr(t5xxl, "fp8_prepared") or not t5xxl.fp8_prepared):
logger.info(f"prepare T5xxl for fp8: set to {t5xxl_dtype}")
def prepare_fp8(text_encoder, target_dtype):
def forward_hook(module):
def forward(hidden_states):
hidden_gelu = module.act(module.wi_0(hidden_states))
hidden_linear = module.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = module.dropout(hidden_states)
hidden_states = module.wo(hidden_states)
return hidden_states
return forward
for module in text_encoder.modules():
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["T5DenseGatedActDense"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
t5xxl.to(t5xxl_dtype)
prepare_fp8(t5xxl.encoder, torch.bfloat16)
t5xxl.fp8_prepared = True
# prepare embeddings
logger.info("Encoding prompts...")
clip_l = clip_l.to(device)
t5xxl = t5xxl.to(device)
def encode(prpt: str):
tokens_and_masks = tokenize_strategy.tokenize(prpt)
with torch.no_grad():
if is_fp8(clip_l_dtype):
with accelerator.autocast():
l_pooled, _, _, _ = encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, None], tokens_and_masks)
else:
with torch.autocast(device_type=device.type, dtype=clip_l_dtype):
l_pooled, _, _, _ = encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, None], tokens_and_masks)
if is_fp8(t5xxl_dtype):
with accelerator.autocast():
_, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, args.apply_t5_attn_mask
)
else:
with torch.autocast(device_type=device.type, dtype=t5xxl_dtype):
_, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [None, t5xxl], tokens_and_masks, args.apply_t5_attn_mask
)
return l_pooled, t5_out, txt_ids, t5_attn_mask
l_pooled, t5_out, txt_ids, t5_attn_mask = encode(prompt)
if negative_prompt:
neg_l_pooled, neg_t5_out, _, neg_t5_attn_mask = encode(negative_prompt)
else:
neg_l_pooled, neg_t5_out, neg_t5_attn_mask = None, None, None
# NaN check
if torch.isnan(l_pooled).any():
raise ValueError("NaN in l_pooled")
if torch.isnan(t5_out).any():
raise ValueError("NaN in t5_out")
if args.offload:
clip_l = clip_l.cpu()
t5xxl = t5xxl.cpu()
# del clip_l, t5xxl
device_utils.clean_memory()
# generate image
logger.info("Generating image...")
model = model.to(device)
if steps is None:
steps = 4 if is_schnell else 50
img_ids = img_ids.to(device)
t5_attn_mask = t5_attn_mask.to(device) if args.apply_t5_attn_mask else None
x = do_sample(
accelerator,
model,
noise,
img_ids,
l_pooled,
t5_out,
txt_ids,
steps,
guidance,
t5_attn_mask,
is_schnell,
device,
flux_dtype,
neg_l_pooled,
neg_t5_out,
neg_t5_attn_mask,
cfg_scale,
)
if args.offload:
model = model.cpu()
# del model
device_utils.clean_memory()
# unpack
x = x.float()
x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2)
# decode
logger.info("Decoding image...")
ae = ae.to(device)
with torch.no_grad():
if is_fp8(ae_dtype):
with accelerator.autocast():
x = ae.decode(x)
else:
with torch.autocast(device_type=device.type, dtype=ae_dtype):
x = ae.decode(x)
if args.offload:
ae = ae.cpu()
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
img = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
# save image
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, f"{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
img.save(output_path)
logger.info(f"Saved image to {output_path}")
if __name__ == "__main__":
target_height = 768 # 1024
target_width = 1360 # 1024
# steps = 50 # 28 # 50
# guidance_scale = 5
# seed = 1 # None # 1
device = get_preferred_device()
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--clip_l", type=str, required=False)
parser.add_argument("--t5xxl", type=str, required=False)
parser.add_argument("--ae", type=str, required=False)
parser.add_argument("--apply_t5_attn_mask", action="store_true")
parser.add_argument("--prompt", type=str, default="A photo of a cat")
parser.add_argument("--output_dir", type=str, default=".")
parser.add_argument("--dtype", type=str, default="bfloat16", help="base dtype")
parser.add_argument("--clip_l_dtype", type=str, default=None, help="dtype for clip_l")
parser.add_argument("--ae_dtype", type=str, default=None, help="dtype for ae")
parser.add_argument("--t5xxl_dtype", type=str, default=None, help="dtype for t5xxl")
parser.add_argument("--flux_dtype", type=str, default=None, help="dtype for flux")
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--steps", type=int, default=None, help="Number of steps. Default is 4 for schnell, 50 for dev")
parser.add_argument("--guidance", type=float, default=3.5)
parser.add_argument("--negative_prompt", type=str, default=None)
parser.add_argument("--cfg_scale", type=float, default=1.0)
parser.add_argument("--offload", action="store_true", help="Offload to CPU")
parser.add_argument(
"--lora_weights",
type=str,
nargs="*",
default=[],
help="LoRA weights, only supports networks.lora_flux and lora_oft, each argument is a `path;multiplier` (semi-colon separated)",
)
parser.add_argument("--merge_lora_weights", action="store_true", help="Merge LoRA weights to model")
parser.add_argument("--width", type=int, default=target_width)
parser.add_argument("--height", type=int, default=target_height)
parser.add_argument("--interactive", action="store_true")
args = parser.parse_args()
seed = args.seed
steps = args.steps
guidance_scale = args.guidance
def is_fp8(dt):
return dt in [torch.float8_e4m3fn, torch.float8_e4m3fnuz, torch.float8_e5m2, torch.float8_e5m2fnuz]
dtype = str_to_dtype(args.dtype)
clip_l_dtype = str_to_dtype(args.clip_l_dtype, dtype)
t5xxl_dtype = str_to_dtype(args.t5xxl_dtype, dtype)
ae_dtype = str_to_dtype(args.ae_dtype, dtype)
flux_dtype = str_to_dtype(args.flux_dtype, dtype)
logger.info(f"Dtypes for clip_l, t5xxl, ae, flux: {clip_l_dtype}, {t5xxl_dtype}, {ae_dtype}, {flux_dtype}")
loading_device = "cpu" if args.offload else device
use_fp8 = [is_fp8(d) for d in [dtype, clip_l_dtype, t5xxl_dtype, ae_dtype, flux_dtype]]
if any(use_fp8):
accelerator = accelerate.Accelerator(mixed_precision="bf16")
else:
accelerator = None
# load clip_l
logger.info(f"Loading clip_l from {args.clip_l}...")
clip_l = flux_utils.load_clip_l(args.clip_l, clip_l_dtype, loading_device)
clip_l.eval()
logger.info(f"Loading t5xxl from {args.t5xxl}...")
t5xxl = flux_utils.load_t5xxl(args.t5xxl, t5xxl_dtype, loading_device)
t5xxl.eval()
# if is_fp8(clip_l_dtype):
# clip_l = accelerator.prepare(clip_l)
# if is_fp8(t5xxl_dtype):
# t5xxl = accelerator.prepare(t5xxl)
# DiT
is_schnell, model = flux_utils.load_flow_model(args.ckpt_path, None, loading_device)
model.eval()
logger.info(f"Casting model to {flux_dtype}")
model.to(flux_dtype) # make sure model is dtype
# if is_fp8(flux_dtype):
# model = accelerator.prepare(model)
# if args.offload:
# model = model.to("cpu")
t5xxl_max_length = 256 if is_schnell else 512
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(t5xxl_max_length)
encoding_strategy = strategy_flux.FluxTextEncodingStrategy()
# AE
ae = flux_utils.load_ae(args.ae, ae_dtype, loading_device)
ae.eval()
# if is_fp8(ae_dtype):
# ae = accelerator.prepare(ae)
# LoRA
lora_models: List[lora_flux.LoRANetwork] = []
for weights_file in args.lora_weights:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(multiplier)
else:
multiplier = 1.0
weights_sd = load_file(weights_file)
is_lora = is_oft = False
for key in weights_sd.keys():
if key.startswith("lora"):
is_lora = True
if key.startswith("oft"):
is_oft = True
if is_lora or is_oft:
break
module = lora_flux if is_lora else oft_flux
lora_model, _ = module.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd, True)
if args.merge_lora_weights:
lora_model.merge_to([clip_l, t5xxl], model, weights_sd)
else:
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {weights_file}: {info}")
lora_model.eval()
lora_model.to(device)
lora_models.append(lora_model)
if not args.interactive:
generate_image(
model,
clip_l,
t5xxl,
ae,
args.prompt,
args.seed,
args.width,
args.height,
args.steps,
args.guidance,
args.negative_prompt,
args.cfg_scale,
)
else:
# loop for interactive
width = target_width
height = target_height
steps = None
guidance = args.guidance
cfg_scale = args.cfg_scale
while True:
print(
"Enter prompt (empty to exit). Options: --w <width> --h <height> --s <steps> --d <seed> --g <guidance> --m <multipliers for LoRA>"
" --n <negative prompt>, `-` for empty negative prompt --c <cfg_scale>"
)
prompt = input()
if prompt == "":
break
# parse options
options = prompt.split("--")
prompt = options[0].strip()
seed = None
negative_prompt = None
for opt in options[1:]:
try:
opt = opt.strip()
if opt.startswith("w"):
width = int(opt[1:].strip())
elif opt.startswith("h"):
height = int(opt[1:].strip())
elif opt.startswith("s"):
steps = int(opt[1:].strip())
elif opt.startswith("d"):
seed = int(opt[1:].strip())
elif opt.startswith("g"):
guidance = float(opt[1:].strip())
elif opt.startswith("m"):
mutipliers = opt[1:].strip().split(",")
if len(mutipliers) != len(lora_models):
logger.error(f"Invalid number of multipliers, expected {len(lora_models)}")
continue
for i, lora_model in enumerate(lora_models):
lora_model.set_multiplier(float(mutipliers[i]))
elif opt.startswith("n"):
negative_prompt = opt[1:].strip()
if negative_prompt == "-":
negative_prompt = ""
elif opt.startswith("c"):
cfg_scale = float(opt[1:].strip())
except ValueError as e:
logger.error(f"Invalid option: {opt}, {e}")
generate_image(model, clip_l, t5xxl, ae, prompt, seed, width, height, steps, guidance, negative_prompt, cfg_scale)
logger.info("Done!")