forked from rishabhgarg25699/Competitive-Programming
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_generic.cpp
204 lines (177 loc) · 5.22 KB
/
graph_generic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include<iostream>
#include<map>
#include<list>
#include<queue>
using namespace std;
template< typename T>
class Graph{
map<T,list<T>> AdjList;
public:
Graph(){
}
void addEdge(T u, T v,bool bidir=true){
AdjList[u].push_back(v);
if(bidir)
AdjList[v].push_back(u);
}
void Print(){
//Iterate over map
//it.first is the key
for(auto it:AdjList){
cout<<it.first<<"-> ";
//it.second is the LL
//auto automatically determines the data type
for(auto adjNode:it.second){
cout<<adjNode;
}
cout<<endl;
}
}
void DFSHelper(T node,map<T,bool> &visited){
//whenever you come to a node mark it visited
visited[node]=true;
cout<<node<<" , ";
///find neighbour not visited
for (T neighbour: AdjList[node]){
if(!visited[neighbour]){
DFSHelper(neighbour,visited);
}
}
}
void DFS(T Src){
map<T,bool> visited;
///components is the number of unconnected graph in the given forest
int component=1;
DFSHelper(Src,visited);
cout<<endl;
for(auto i:AdjList){
T city=i.first;
///we iterate over all the cities after we have completed a DFS for a particular components
///and we again procede with the DFS of the city which is unvisited and increase the cnt of component
if(!visited[city]){
DFSHelper(city,visited);
component++;
}
}
cout<<"The current graph had "<<component<<" components";
}
void Topological(T node, map <T,bool> &visited, list<T> &ordering){
visited[node]=true;
for(T neighbour:AdjList[node]){
if(!visited[neighbour])
Topological(neighbour,visited,ordering);
}
//at this point every neighbour of the node is visited hence we enter this node into the list
ordering.push_front(node);
}
void dfsTopologicalSort(){
map<T,bool> visited;
list <T> Ordering;
for(auto it:AdjList){
T node= it.first;
if(!visited[node])
Topological(node,visited,Ordering);
}
for( T ele: Ordering){
cout<<ele<<" -> ";
}
}
void BFsTopologicalSort(){
//create and find in degree of all the elements
map<T, int> Indeg;
map<T, bool> visited;
queue<T> q;
//initialise
for(auto it:AdjList){
T node=it.first;
visited[node]=false;
Indeg[node]=0;
}
for(auto it:AdjList){
T node=it.first;
for(T neighbour :AdjList[node]){
Indeg[neighbour]++;
}
}
for(auto it:AdjList){
T node=it.first;
if(Indeg[node]==0)
q.push(node);
}
//start of algo
while(!q.empty()){
T curNode=q.front();
q.pop();
cout<<curNode<<" ";
for(T v:AdjList[curNode]){
Indeg[v]--;
if(Indeg[v]==0){
q.push(v);
}
}
}
}
bool IsCyclicBFS(T src){
map<T, bool> visited;
map<T, T> Parent;
queue <T> q;
visited[src]=true;
Parent[src]=src;
q.push(src);
while(!q.empty()){
T Curr=q.front();
q.pop();
for(T neighbour:AdjList[Curr]){
if(visited[neighbour]&& Parent[neighbour]!=Curr){
return true;
}
else if(!visited[neighbour]){
visited[neighbour]=true;
Parent[neighbour]=Curr;
q.push(neighbour);
}
}
}
return false;
}
bool IsCyclicDFSHelper(T src, T Parent, map<T,bool> &visited){
visited[src]=true;
for(T neighbour:AdjList[src]){
if(!visited[neighbour]){
bool ans=IsCyclicDFSHelper(neighbour,src,visited);
if(ans)
return true;
}
else if(neighbour!=Parent){
return true;
}
}
return false;
}
bool IsCyclicDFS(T src){
map<T,bool> visited;
//map<T, int> Parent;
for(auto it: AdjList){
T node= it.first;
if(!visited[node]){
bool ans=IsCyclicDFSHelper(node,visited,node);
if(ans)
return true;
}
}
return false;
}
};
int main(){
Graph <string>g;
g.addEdge("Putin","Trump",false);
g.addEdge("Putin","Modi",false);
g.addEdge("Putin","Pope ",false);
g.addEdge("Modi","Trump",true);
g.addEdge("Modi","Yogi",false);
g.addEdge("Yogi","Prabhu",false);
g.addEdge("Prabhu","Modi",false);
g.Print();
//g.dfsTopologicalSort();
g.BFsTopologicalSort();
}