forked from juskaiser/FARCON_NLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utilities.py
56 lines (47 loc) · 1.89 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pandas as pd
import numpy as np
import itertools
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
def SimpleVectorizer(documents):
cv = CountVectorizer(lowercase=False, min_df=1)
term_matrix = cv.fit_transform(documents).todense()
labels = cv.get_feature_names()
results_df = pd.DataFrame(term_matrix, columns=labels, index=documents)
return results_df
def DisplayTFMatrix(CVinstance, documents):
term_matrix = CVinstance.fit_transform(documents).todense()
labels = CVinstance.get_feature_names()
return pd.DataFrame(term_matrix, columns=labels, index=documents)
# Courtesy of the Scikit learn examples:
# http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('Actual')
plt.xlabel('Predicted')