-
Notifications
You must be signed in to change notification settings - Fork 0
/
example100.py
182 lines (141 loc) · 4.31 KB
/
example100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from __future__ import print_function
# --------------------------------------------------------------------
from petsc4py import PETSc
# --------------------------------------------------------------------
OptDB = PETSc.Options()
INFO = OptDB.hasName('info')
def LOG(arg):
if INFO:
print(arg)
# --------------------------------------------------------------------
class Laplace1D(object):
def create(self, A):
LOG('Laplace1D.create()')
M, N = A.getSize()
assert M == N
def destroy(self, A):
LOG('Laplace1D.destroy()')
def view(self, A, vw):
LOG('Laplace1D.view()')
def setFromOptions(self, A):
LOG('Laplace1D.setFromOptions()')
def setUp(self, A):
LOG('Laplace1D.setUp()')
def assemblyBegin(self, A, flag):
LOG('Laplace1D.assemblyBegin()')
def assemblyEnd(self, A, flag):
LOG('Laplace1D.assemblyEnd()')
def getDiagonal(self, A, d):
LOG('Laplace1D.getDiagonal()')
M, N = A.getSize()
h = 1.0/(M-1)
d.set(2.0/h**2)
def mult(self, A, x, y):
LOG('Laplace1D.mult()')
M, N = A.getSize()
xx = x.getArray(readonly=1) # to numpy array
yy = y.getArray(readonly=0) # to numpy array
yy[0] = 2.0*xx[0] - xx[1]
yy[1:-1] = - xx[:-2] + 2.0*xx[1:-1] - xx[2:]
yy[-1] = - xx[-2] + 2.0*xx[-1]
h = 1.0/(M-1)
yy *= 1.0/h**2
def multTranspose(self, A, x, y):
LOG('Laplace1D.multTranspose()')
self.mult(A, x, y)
# --------------------------------------------------------------------
class Jacobi(object):
def create(self, pc):
LOG('Jacobi.create()')
self.diag = None
def destroy(self, pc):
LOG('Jacobi.destroy()')
if self.diag:
self.diag.destroy()
def view(self, pc, vw):
LOG('Jacobi.view()')
def setFromOptions(self, pc):
LOG('Jacobi.setFromOptions()')
def setUp(self, pc):
LOG('Jacobi.setUp()')
A, B = pc.getOperators()
self.diag = B.getDiagonal(self.diag)
def apply(self, pc, x, y):
LOG('Jacobi.apply()')
y.pointwiseDivide(x, self.diag)
def applyTranspose(self, pc, x, y):
LOG('Jacobi.applyTranspose()')
self.apply(pc, x, y)
# --------------------------------------------------------------------
class ConjGrad(object):
def create(self, ksp):
LOG('ConjGrad.create()')
self.work = []
def destroy(self, ksp):
LOG('ConjGrad.destroy()')
for vec in self.work:
if vec:
vec.destroy()
self.work = []
def view(self, ksp, viewer):
LOG('ConjGrad.view()')
def setUp(self, ksp):
LOG('ConjGrad.setUp()')
self.work[:] = ksp.getWorkVecs(right=3, left=None)
def solve(self, ksp, b, x):
LOG('ConjGrad.solve()')
A, P = get_op_pc(ksp, transpose=False)
pcg(ksp, A, P, b, x, *self.work)
def solveTranspose(self, ksp, b, x):
LOG('ConjGrad.solveTranspose()')
A, P = get_op_pc(ksp, transpose=True)
pcg(ksp, A, P, b, x, *self.work)
def get_op_pc(ksp, transpose=False):
op, _ = ksp.getOperators()
pc = ksp.getPC()
if not transpose:
A = op.mult
P = pc.apply
else:
A = op.multTranspose
P = pc.applyTranspose
return A, P
def do_loop(ksp, r):
its = ksp.getIterationNumber()
rnorm = r.norm()
ksp.setResidualNorm(rnorm)
ksp.logConvergenceHistory(rnorm)
ksp.monitor(its, rnorm)
reason = ksp.callConvergenceTest(its, rnorm)
if not reason:
ksp.setIterationNumber(its+1)
else:
ksp.setConvergedReason(reason)
return reason
def pcg(ksp, A, P, b, x, r, z, p):
A(x, r)
r.aypx(-1, b)
P(r, z)
delta = r.dot(z)
z.copy(p)
while not do_loop(ksp, z):
A(p, z)
alpha = delta / z.dot(p)
x.axpy(+alpha, p)
r.axpy(-alpha, z)
P(r, z)
delta_old = delta
delta = r.dot(z)
beta = delta / delta_old
p.aypx(beta, z)
def richardson(ksp, A, P, b, x, r, z):
A(x, r)
r.aypx(-1, b)
P(r, z)
x.axpy(1, z)
while not do_loop(ksp, z):
A(x, r)
r.aypx(-1, b)
P(r, z)
x.axpy(1, z)
# --------------------------------------------------------------------