-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjson2csv.py
executable file
·126 lines (93 loc) · 4.84 KB
/
json2csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/python3
import math
import json
import pandas as pd
import re
import argparse
import os
algos = {'MT-Edit-Redundant-Skip-Center_Edits_Sparse_4-Single_Heur-Matrix' : 'Single Sparse',
'ST-Edit-Redundant-Normal-Center_4-First-Basic-Matrix' : 'Lower Bound (LB No-Update)',
'ST-Edit-Redundant-Normal-Center_4-First-No-Matrix' : 'No Redundancy',
'ST-Edit-Redundant-Skip-Center_4-First-Basic-Matrix' : 'Skip Conversion (LB No-Update)',
'ST-Edit-Redundant-Skip-Center_4-Least-Basic-Matrix' : 'Least Editable (LB No-Update)',
#'ST-Edit-Redundant-Skip-Center_4-Single_Heur-Matrix' : 'Single',
#'ST-Edit-Redundant-Skip-Center_5-Single_Heur-Matrix' : 'Single',
'ST-Edit-Redundant-Skip-Center_Edits_Sparse_4-Single_Heur-Matrix' : 'Single Sparse',
'ST-Edit-Redundant-Skip-Center_Edits_Sparse_5-Single_Heur-Matrix' : 'Single Sparse',
'MT-Edit-Redundant-Skip-Center_4-Single_Heur-Matrix' : 'Single',
'ST-Edit-None-Normal-Center_4-First-No-Matrix' : 'Base',
'ST-Edit-Redundant-Normal-Center_4-First-Updated-Matrix' : 'Lower Bound',
'ST-Edit-Redundant-Normal-Center_4-First-Min_Deg-Matrix' : 'Lower Bound',
'ST-Edit-Redundant-Skip-Center_4-First-Updated-Matrix' : 'Skip Conversion',
'ST-Edit-Redundant-Skip-Center_4-Least-Updated-Matrix' : 'Least Editable',
'ST-Edit-Redundant-Skip-Center_4-Least-Min_Deg-Matrix' : 'Least Editable',
'ST-Edit-Redundant-Skip-Center_4-Most-Min_Deg-Matrix' : 'Most Forbidden',
'ST-Edit-Redundant-Skip-Center_4-Most_Pruned-Min_Deg-Matrix' : 'Early Pruning',
'ST-Edit-Redundant-Skip-Center_4-Single_Most-Min_Deg-Matrix' : 'Single (Most Forbidden)',
#'ST-Edit-Redundant-Skip-Center_4-Single_Heur-Matrix' : 'Single',
#'ST-Edit-Redundant-Skip-Center_5-Single_Heur-Matrix' : 'Single',
'ST-Edit-Redundant-Skip-Center_4-Single_Heur-Matrix' : 'Single',
'ST-Edit-Redundant-Skip-Center_5-Single_Heur-Matrix' : 'Single',
'ST-Edit-Undo-Normal-Center_4-First-No-Matrix' : 'No Undo'}
def load_json(jsonfile):
with open(jsonfile, "r") as f:
data = json.load(f)
json_dir = os.path.abspath(os.path.dirname(jsonfile))
df_data = []
for experiment in data:
if not 'k' in experiment or not 'time' in experiment['results'] or not 'solved' in experiment['results']:
continue
a = experiment['algo']
if not a in algos:
continue
exp_dict = dict()
exp_dict["Algorithm"] = algos[a]
exp_dict["l"] = 4 if "4" in a else 5
exp_dict['MT'] = ('MT' in a)
g = experiment['graph']
exp_dict["Graph"], _ = os.path.splitext(os.path.basename(g))
exp_dict["Permutation"] = experiment['permutation']
exp_dict["n"] = experiment['n']
exp_dict["m"] = experiment['m']
exp_dict["Threads"] = experiment['threads']
exp_dict["k"] = experiment['k']
res = experiment['results']
exp_dict["Solved"] = (res['solved'] == 'true')
exp_dict["Time [s]"] = res['time']
if "counters" in res:
for stat, values in res['counters'].items():
exp_dict[stat.capitalize()] = sum(values)
df_data.append(exp_dict)
return pd.DataFrame(df_data)
def get_scaling(row, df, measure):
if row is None or not 'k' in row:
return math.nan
key = (row['Graph'], row['Permutation'], row['Algorithm'], row['MT'], row['Threads'], row['l'], row['k'] - 1)
if key in df.groups:
previous = df.get_group(key)
if len(previous) > 1:
print("Found too many rows: {}".format(previous))
return math.nan
return row[measure] / previous[measure].values[0]
return math.nan
def get_speedup(row, df):
if row is None or not 'k' in row:
return math.nan
st_row = df.get_group((row['Graph'], row['Permutation'], row['Algorithm'], False, 1, row['l'], row['k']))
if len(st_row) == 0:
return math.nan
if not len(st_row) == 1:
raise RuntimeError("Found too many rows: {}".format(st_row))
return st_row['Time [s]'].values[0] / row['Time [s]']
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert results json file to csv.")
parser.add_argument("json", help="The JSON input file.")
parser.add_argument("csv", help="The CSV output file.")
args = parser.parse_args()
df = load_json(args.json)
grouped_df = df.groupby(['Graph', 'Permutation', 'Algorithm', 'MT', 'Threads', 'l', 'k'])
df['Scaling Factor Time'] = df.apply(get_scaling, axis=1, df=grouped_df, measure="Time [s]")
df['Scaling Factor Calls'] = df.apply(get_scaling, axis=1, df=grouped_df, measure="Calls")
df['Speedup'] = df.apply(get_speedup, axis=1, df=grouped_df)
df['Efficiency'] = df['Speedup']/df['Threads']
df.to_csv(args.csv)