-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProportional Controller.py
179 lines (142 loc) · 5.18 KB
/
Proportional Controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#Importing required packages
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.gridspec as gridspec
#Time array
t0 = 0 #[sec]
dt = 0.04 #[sec]
t_end = 50 #[sec]
t = np.arange(t0,t_end+dt,dt)
#Volume Parameters:
Vol_final = 100
dVol = 10
#Proportional Constants and water properties
Kp1 = 1000
Kp2 = 1000
Kp3 = 5000
density_water = 1000 #[kg/m^3]
#Initial Volumes for the respective tanks and Volume array
#Tank-1
vol_o1_i=30
vol_r1_i=70
vol_r1 = np.zeros(len(t))
vol_r1[0] = vol_r1_i
volume_Tank1 = np.zeros(len(t))
volume_Tank1[0] = vol_o1_i
error1 = np.zeros(len(t))
m_dot1 = Kp1*error1
#Tank-2:
vol_o2_i=40
vol_r2_i=10
vol_r2 = np.zeros(len(t))
vol_r2[0] = vol_r2_i
volume_Tank2= np.zeros(len(t))
volume_Tank2[0] = vol_o2_i
error2 = np.zeros(len(t))
m_dot2 = Kp2*error2
#Tank-3:
vol_o3_i=50
vol_r3_i=20
vol_r3 = vol_r3=vol_o3_i+1*t*np.sin(2*np.pi*(0.005*t)*t)
vol_r3[0] = vol_r3_i
volume_Tank3 = np.zeros(len(t))
volume_Tank3[0] = vol_o3_i
error3 = np.zeros(len(t))
m_dot3 = Kp3*error3
#Generating the rest of the array elements for the data to generate plot animation
for i in range(1,len(t)):
if i<300:
vol_r1[i]=vol_r1_i
vol_r2[i]=vol_r2_i+3*t[i]
elif i<600:
vol_r1[i]=20
vol_r2[i]=vol_r2_i+3*t[i]
time_temp2=t[i]
temp2=vol_r2[i]
elif i<900:
vol_r1[i]=90
vol_r2[i]=temp2-1*(t[i]-time_temp2)
else:
vol_r1[i]=50
vol_r2[i]=temp2-1*(t[i]-time_temp2)
error1[i-1]=vol_r1[i-1]-volume_Tank1[i-1]
error2[i-1]=vol_r2[i-1]-volume_Tank2[i-1]
error3[i-1]=vol_r3[i-1]-volume_Tank3[i-1]
m_dot1[i]=Kp1*error1[i-1]
m_dot2[i]=Kp2*error2[i-1]
m_dot3[i]=Kp3*error3[i-1]
volume_Tank1[i]=volume_Tank1[i-1]+(m_dot1[i-1]+m_dot1[i])/(2*density_water)*(dt)
volume_Tank2[i]=volume_Tank2[i-1]+(m_dot2[i-1]+m_dot2[i])/(2*density_water)*(dt)
volume_Tank3[i]=volume_Tank3[i-1]+(m_dot3[i-1]+m_dot3[i])/(2*density_water)*(dt)
vol_r1_2=vol_r1
vol_r2_2=vol_r2
vol_r3_2=vol_r3
def update_plot(num):
if num>=len(volume_Tank1):
num=len(volume_Tank1)-1
tank_12.set_data([0,0],[-145,volume_Tank1[num]-110])
tnk_1.set_data(t[0:num],volume_Tank1[0:num])
vol_r1.set_data([-radius*width_ratio,radius*width_ratio],[vol_r1_2[num],vol_r1_2[num]])
vol_r1_line.set_data([t0,t_end],[vol_r1_2[num],vol_r1_2[num]])
tank_22.set_data([0,0],[-145,volume_Tank2[num]-110])
tnk_2.set_data(t[0:num],volume_Tank2[0:num])
vol_r2.set_data([-radius*width_ratio,radius*width_ratio],[vol_r2_2[num],vol_r2_2[num]])
vol_r2_line.set_data([t0,t_end],[vol_r2_2[num],vol_r2_2[num]])
tank_32.set_data([0,0],[-145,volume_Tank3[num]-110])
tnk_3.set_data(t[0:num],volume_Tank3[0:num])
vol_r3.set_data([-radius*width_ratio,radius*width_ratio],[vol_r3_2[num],vol_r3_2[num]])
vol_r3_line.set_data([t0,t_end],[vol_r3_2[num],vol_r3_2[num]])
return vol_r1,tank_12,vol_r1_line,tnk_1,vol_r2,tank_22,vol_r2_line,tnk_2,vol_r3,tank_32,vol_r3_line,tnk_3
##################### ANIMATION #####################
frame_amount = len(t)
width_ratio = 1
radius = 5 #[m]
final_volume = 100 #[m^3]
bottom = 0 #[m^3]
fig=plt.figure(figsize=(16,9),dpi=80,facecolor=(0.8,0.8,0.8))
gs=gridspec.GridSpec(2,3)
# Create object for Tank1
ax0=fig.add_subplot(gs[0,0],facecolor=(0.9,0.9,0.9))
vol_r1,=ax0.plot([],[],'r',linewidth=2)
tank_12,=ax0.plot([],[],'royalblue',linewidth=500,zorder=0)
plt.xlim(-radius*width_ratio,radius*width_ratio)
plt.ylim(bottom,final_volume)
plt.xticks(np.arange(-radius,radius+1,radius))
plt.yticks(np.arange(bottom,final_volume+dVol,dVol))
plt.ylabel('tank volume [m^3]')
plt.title('Tank 1')
# Create object for Tank2
ax1=fig.add_subplot(gs[0,1],facecolor=(0.9,0.9,0.9))
vol_r2,=ax1.plot([],[],'r',linewidth=2)
tank_22,=ax1.plot([],[],'royalblue',linewidth=500,zorder=0)
plt.xlim(-radius*width_ratio,radius*width_ratio)
plt.ylim(bottom,final_volume)
plt.xticks(np.arange(-radius,radius+1,radius))
plt.yticks(np.arange(bottom,final_volume+dVol,dVol))
plt.title('Tank 2')
# Create object for Tank3
ax2=fig.add_subplot(gs[0,2],facecolor=(0.9,0.9,0.9))
vol_r3,=ax2.plot([],[],'r',linewidth=2)
tank_32,=ax2.plot([],[],'royalblue',linewidth=500,zorder=0)
plt.xlim(-radius*width_ratio,radius*width_ratio)
plt.ylim(bottom,final_volume)
plt.xticks(np.arange(-radius,radius+1,radius))
plt.yticks(np.arange(bottom,final_volume+dVol,dVol))
plt.title('Tank 3')
# Create volume function
ax3=fig.add_subplot(gs[1,:], facecolor=(0.9,0.9,0.9))
vol_r1_line,=ax3.plot([],[],'r',linewidth=2)
vol_r2_line,=ax3.plot([],[],'r',linewidth=2)
vol_r3_line,=ax3.plot([],[],'r',linewidth=2)
tnk_1,=ax3.plot([],[],'blue',linewidth=4,label='Tank 1')
tnk_2,=ax3.plot([],[],'green',linewidth=4,label='Tank 2')
tnk_3,=ax3.plot([],[],'red',linewidth=4,label='Tank 3')
plt.xlim(0,t_end)
plt.ylim(0,final_volume)
plt.ylabel('tank volume [m^3]')
plt.grid(True)
plt.legend(loc='upper right',fontsize='small')
plane_ani=animation.FuncAnimation(fig,update_plot,
frames=frame_amount,interval=20,repeat=False,blit=True)
plt.show()