-
Notifications
You must be signed in to change notification settings - Fork 894
/
train.py
169 lines (129 loc) · 6.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import json
import time
import numpy as np
import wandb
from tqdm import tqdm
from mesh_transformer.build_model import build_model
from lm_eval import evaluator, tasks
from tasks.eval_harness import EvalHarnessAdaptor
from tfrecord_loader import TFRecordNewInputs
import multiprocessing
def parse_args():
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--tpu", type=str, help="Name of TPU to train on.")
parser.add_argument("--tpu_region", type=str, help="Region of TPU to train on.")
parser.add_argument("--preemptible", action="store_true")
parser.add_argument("--config", type=str, default=None, help="Config file location")
parser.add_argument("--new", action="store_true", help="If set, deletes previous checkpoint, if it exists, and "
"starts a new training run")
parser.add_argument("--version", type=int, default=1, help="Choose which model version to use")
args = parser.parse_args()
return args
if __name__ == "__main__":
# huggingface tokenizers gets very angry if you fork
multiprocessing.set_start_method("spawn")
args = parse_args()
params = json.load(open(args.config))
if args.new:
print(f"Starting experiment {params['name']} from scratch! "
f"all data in gs://{params['bucket']}/{params['model_dir']}/ will be deleted")
input("Hit enter to continue")
tpu_name = args.tpu
region = args.tpu_region
preemptible = args.preemptible
clean_start = args.new
gradient_accumulation_steps = params.get("gradient_accumulation_steps", 1)
per_replica_batch = params["per_replica_batch"]
tpu_size = params["tpu_size"]
cores_per_replica = params["cores_per_replica"]
bucket = params["bucket"]
model_dir = params["model_dir"]
layers = params["layers"]
d_model = params["d_model"]
n_heads = params["n_heads"]
n_vocab = params["n_vocab"]
seq = params["seq"]
norm = params["norm"]
val_batches = params["val_batches"]
val_every = params["val_every"]
ckpt_every = params["ckpt_every"]
keep_every = params["keep_every"]
eval_tasks = params["eval_harness_tasks"]
total_steps = params["total_steps"]
pe = params["pe"]
assert pe in ["fixed", "rotary", "t5"]
t = build_model(params, tpu_name, region, preemptible, version=args.version)
try:
t.save(0, bucket, model_dir, init=True, overwrite=clean_start)
step = 0
train_load_restore = None
except Exception as e:
print(f"Save failed with error {e}, trying to load instead...", e)
step, aux = t.load(bucket, model_dir)
train_load_restore = aux.get("train_loader", None)
if train_load_restore is None:
print("Failed to restore train loader state")
train_dataset = TFRecordNewInputs(f"data/{params['train_set']}",
batch_size=(
gradient_accumulation_steps,
per_replica_batch * tpu_size // cores_per_replica),
sample_size=params['seq'],
restore_state=train_load_restore)
global_val_batch = int(per_replica_batch * tpu_size // cores_per_replica * params.get("val_batch_multiplier", 1))
val_sets = {}
for k, v in params['val_set'].items():
val_sets[k] = TFRecordNewInputs(f"data/{v}",
batch_size=(global_val_batch,),
sample_size=seq)
# use dynamic seq length unless pe is fixed
adaptor = EvalHarnessAdaptor(t,
seq,
global_val_batch,
shrink=pe != "fixed",
min_seq=1024 if args.version == 2 else None) # work around suboptimal pjit layout
start = time.time()
t.train(train_dataset.get_samples())
print(f"Train fn compiled in {time.time() - start:.06}s")
start = time.time()
for val_set in val_sets.values():
t.eval(val_set.get_samples())
print(f"Eval fn compiled in {time.time() - start:.06}s")
project = params.get("wandb_project", "mesh-transformer-jax")
wandb.init(project=project, entity="eleutherai", name=params["name"], config=params)
eval_task_dict = tasks.get_task_dict(eval_tasks)
pbar = tqdm(initial=step, total=total_steps, desc="Training progress")
while True:
loss, last_loss = t.train(train_dataset.get_samples())
wandb.log({'train/loss': loss, 'train/last_loss': last_loss}, step)
if (step % ckpt_every == 0 and step) or step == total_steps:
t.save(step, bucket, model_dir,
aux={"train_loader": train_dataset.get_state()},
init=False,
delete_old=step % keep_every != 0)
if step == total_steps:
print("training completed!")
exit()
if step % val_every == 0:
for name, val_set in val_sets.items():
val_loss = []
for i, _ in tqdm(zip(val_set.sample_once(), range(val_batches)),
desc=f"validation for step {step}, set {name}",
total=val_batches):
val_loss.append(t.eval(i))
val_loss = np.array(val_loss).mean()
print(f"validation loss for step {step}, set {name}: {val_loss}")
wandb.log({f'val/loss_{name}': float(val_loss)}, step)
results = evaluator.evaluate(adaptor, eval_task_dict, False, 0, None)
flat_results = {}
for task_name, task_res in results["results"].items():
version = results["versions"][task_name]
for metric_name, metric_res in task_res.items():
flat_results[f"{task_name}-v{version}/{metric_name}"] = float(metric_res)
dumped = json.dumps(results, indent=2)
print(f"step {step} val results: {dumped}")
wandb.log(flat_results, step)
step += 1
pbar.set_postfix({'loss': loss, 'last_loss': last_loss})
pbar.update()