-
Notifications
You must be signed in to change notification settings - Fork 32
/
train.py
68 lines (56 loc) · 2.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import sys
import random
import math
import time
from bowl_config import bowl_config
from bowl_dataset import BowlDataset
import utils
import model as modellib
from model import log
from glob import glob
# Root directory of the project
ROOT_DIR = os.getcwd()
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
model = modellib.MaskRCNN(mode="training", config=bowl_config,
model_dir=MODEL_DIR)
# Which weights to start with?
init_with = "imagenet" # imagenet, coco, or last
if init_with == "imagenet":
model.load_weights(model.get_imagenet_weights(), by_name=True)
elif init_with == "coco":
# Load weights trained on MS COCO, but skip layers that
# are different due to the different number of classes
# See README for instructions to download the COCO weights
model.load_weights(COCO_MODEL_PATH, by_name=True,
exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])
elif init_with == "last":
# Load the last model you trained and continue training
model.load_weights(model.find_last()[1], by_name=True)
# Training dataset
dataset_train = BowlDataset()
dataset_train.load_bowl('stage1_train')
dataset_train.prepare()
# # Validation dataset
dataset_val = BowlDataset()
dataset_val.load_bowl('stage1_train')
dataset_val.prepare()
# Train the head branches
# Passing layers="heads" freezes all layers except the head
# layers. You can also pass a regular expression to select
# which layers to train by name pattern.
#model.train(dataset_train, dataset_val,
# learning_rate=bowl_config.LEARNING_RATE,
# epochs=1,
# layers='heads')
model.train(dataset_train, dataset_val,
learning_rate=bowl_config.LEARNING_RATE / 10,
epochs=100,
layers="all")