-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTesting model training dengan gambar uji.py
66 lines (57 loc) · 2.2 KB
/
Testing model training dengan gambar uji.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import cv2
import numpy as np
import glob
import random
import time
net = cv2.dnn.readNet("yolov3_training_final.weights", "yolov3-training.cfg")
classes = []
with open("classes.txt", "r") as f:
classes = f.read().splitlines()
images_path = glob.glob(r"C:\Users\user\Documents\kuliah\MSIB\Batch 3\Project Capstone Perancangan Manufaktur\10000 max batch & 64 batch size_fix\10000 max batch & 64 batch size\IMG_20221012_125711.jpg") #ganti dengan direktori gambar anda
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
random.shuffle(images_path)
for img_path in images_path:
img = cv2.imread(img_path)
img = cv2.resize(img, (480,360))
height, width, channels = img.shape
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
start = time.time()
outs = net.forward(output_layers)
end = time.time()
print("[INFO] Waktu deteksi yolo {:.6f} detik".format(end - start))
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
# Deteksi objek
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
#print(indexes)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y + 30), font, 1, color,
3)
cv2.imshow("Kardus Detection", img)
cv2.waitKey(0)
cv2.destroyAllWindows()