-
Notifications
You must be signed in to change notification settings - Fork 0
/
bp_hidden1.py
110 lines (83 loc) · 3.04 KB
/
bp_hidden1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
from torchvision.datasets import mnist
from torch.utils.data import DataLoader
from torchvision import transforms,datasets
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler,LabelBinarizer,label_binarize
batch_size=32
transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])
train_dataset = mnist.MNIST('../data', train=True, transform=transform,download=False)
test_dataset = mnist.MNIST('../data', train=False,transform=transform,download=False)
train_loader=DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
test_loader=DataLoader(test_dataset,batch_size=batch_size,shuffle=True)
class BP:
def __init__(self,layers):
self.w1=np.random.random([layers[0],layers[1]])*2-1
self.w2=np.random.random([layers[1],layers[2]])*2-1
self.b1=np.zeros([layers[1]])
self.b2=np.zeros([layers[2]])
def sigmoid(self,x):
return 1/(1+np.exp(-x))
def d_sigmoid(self,x):
return x*(1-x)
def train(self,x_data,y_data,lr):
x=x_data
y=y_data
#前向传播
l1=self.sigmoid(np.dot(x,self.w1)+self.b1)
l2=self.sigmoid(np.dot(l1,self.w2)+self.b2)
#反向传播
delta_l2=(y-l2)*self.dsigmoid(l2)
delta_l1=delta_l2.dot(self.w2.T)*self.d_sigmoid(l1)
#权值变化
self.w2+=(lr*l1.T.dot(delta_l2))/x.shape[0]
self.w1+=(lr*x.T.dot(delta_l1))/x.shape[0]
#偏置改变
self.b2+=lr*np.mean(delta_l2,axis=0)
self.b1+=lr*np.mean(delta_l1,axis=0)
def predict(self,x):
l1=self.sigmoid(np.dot(x,self.w1)+self.b1)
l2=self.sigmoid(np.dot(l1,self.w2)+self.b2)
return l2
bp=BP([28*28,300,10])
loss=[]
accuracy=[]
lr=0.1
num_epoches=121
for epoch in range(num_epoches):
if epoch%30==0:
lr=lr*0.5
for img,label in train_loader:
img=img.view(img.size(0),-1)
img=np.array(img)
label=np.array(label)
label=label_binarize(label,classes=[0,1,2,3,4,5,6,7,8,9])
bp.train(img,label,lr)
test_loss=0
test_acc=0
for img, label in test_loader:
img = img.view(img.size(0), -1)
img=np.array(img)
label=np.array(label)
predictions = bp.predict(img)
y2 = np.argmax(predictions, axis=1)
acc = np.equal(y2, label).mean() # 预测准确率
cost = (np.square(label - y2) / 2).mean()
test_loss+=cost
test_acc+=acc
accuracy.append(test_acc/len(test_loader))
loss.append(test_loss/len(test_loader))
print('epoch:', epoch, 'accuracy:', acc, 'loss:', cost)
plt.figure(figsize=(12,12),dpi=80)
plt.subplot(2,1,1)
plt.plot(range(0,len(loss)),loss)
plt.ylim(0,1)
plt.ylabel('loss',fontsize=15)
plt.subplot(2,1,2)
plt.plot(range(0,len(accuracy)),accuracy)
plt.xlabel('epochs',fontsize=15)
plt.ylabel('accuracy',fontsize=15)
plt.ylim(0,1)
plt.savefig('../data/layer2_result.png')
plt.show()