forked from richmondu/libfaceid
-
Notifications
You must be signed in to change notification settings - Fork 11
/
facial_recognition.py
633 lines (498 loc) · 24.6 KB
/
facial_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import os
import sys
from time import time
import datetime
import argparse
import numpy as np
import cv2
from libfaceid.detector import FaceDetectorModels, FaceDetector
from libfaceid.encoder import FaceEncoderModels, FaceEncoder
from libfaceid.classifier import FaceClassifierModels
# Set the window name
WINDOW_NAME = "Facial Recognition"
# Set the input directories
INPUT_DIR_DATASET = "datasets"
INPUT_DIR_MODEL_DETECTION = "models/detection/"
INPUT_DIR_MODEL_ENCODING = "models/encoding/"
INPUT_DIR_MODEL_TRAINING = "models/training/"
INPUT_DIR_MODEL_ESTIMATION = "models/estimation/"
# Set width and height
RESOLUTION_QVGA = (320, 240)
RESOLUTION_VGA = (640, 480)
RESOLUTION_HD = (1280, 720)
RESOLUTION_FULLHD = (1920, 1080)
def cam_init(width, height):
cap = cv2.VideoCapture(0)
if sys.version_info < (3, 0):
cap.set(cv2.cv.CV_CAP_PROP_FPS, 30)
cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height)
else:
cap.set(cv2.CAP_PROP_FPS, 30)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
return cap
def cam_release(cap):
cap.release()
cv2.destroyAllWindows()
def ensure_directory(file_path):
directory = os.path.dirname("./" + file_path)
if not os.path.exists(directory):
os.makedirs(directory)
def process_webcam(cam_resolution, out_resolution, framecount):
# Initialize the camera
cap = cam_init(cam_resolution[0], cam_resolution[1])
# Initialize fps counter
fps_frames = 0
fps_start = time()
while (True):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == 0:
break
# Resize to QVGA so that RPI we can have acceptable fps
if out_resolution is not None:
frame = cv2.resize(frame, out_resolution);
# Display the resulting frame
cv2.imshow(WINDOW_NAME, frame)
# Update frame count
fps_frames += 1
if (framecount!=0 and fps_frames >= framecount):
break
# Check for user actions
keyPressed = cv2.waitKey(1) & 0xFF
if keyPressed == 27:
break
# Set the fps
fps = fps_frames / (time() - fps_start)
# Release the camera
cam_release(cap)
return fps
def process_facedetection(cam_resolution, out_resolution, framecount, model_detector=0):
from libfaceid.pose import FacePoseEstimatorModels, FacePoseEstimator
from libfaceid.age import FaceAgeEstimatorModels, FaceAgeEstimator
from libfaceid.gender import FaceGenderEstimatorModels, FaceGenderEstimator
from libfaceid.emotion import FaceEmotionEstimatorModels, FaceEmotionEstimator
model_poseestimator = FacePoseEstimatorModels.DEFAULT
model_ageestimator = FaceAgeEstimatorModels.DEFAULT
model_genderestimator = FaceGenderEstimatorModels.DEFAULT
model_emotionestimator = FaceEmotionEstimatorModels.DEFAULT
# Initialize the camera
cap = cam_init(cam_resolution[0], cam_resolution[1])
###############################################################################
# FACE DETECTION
###############################################################################
# Initialize face detection
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)#, optimize=True)
###############################################################################
# FACE POSE/AGE/GENDER/EMOTION ESTIMATION
###############################################################################
# Initialize face pose/age/gender/emotion estimation
if model_poseestimator is not None:
face_pose_estimator = FacePoseEstimator(model=model_poseestimator, path=INPUT_DIR_MODEL_ESTIMATION)
if model_ageestimator is not None:
face_age_estimator = FaceAgeEstimator(model=model_ageestimator, path=INPUT_DIR_MODEL_ESTIMATION)
if model_genderestimator is not None:
face_gender_estimator = FaceGenderEstimator(model=model_genderestimator, path=INPUT_DIR_MODEL_ESTIMATION)
if model_emotionestimator is not None:
face_emotion_estimator = FaceEmotionEstimator(model=model_emotionestimator, path=INPUT_DIR_MODEL_ESTIMATION)
(age, gender, emotion) = (None, None, None)
# Initialize fps counter
fps_frames = 0
fps_start = time()
while (True):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == 0:
break
# Resize to QVGA so that RPI we can have acceptable fps
if out_resolution is not None:
frame = cv2.resize(frame, out_resolution);
###############################################################################
# FACE DETECTION
###############################################################################
# Detect faces and set bounding boxes
faces = face_detector.detect(frame)
for (index, face) in enumerate(faces):
(x, y, w, h) = face
###############################################################################
# FACE AGE/GENDER/EMOTION ESTIMATION
###############################################################################
face_image = frame[y:y+h, h:h+w]
if model_ageestimator is not None:
age = face_age_estimator.estimate(frame, face_image)
if model_genderestimator is not None:
gender = face_gender_estimator.estimate(frame, face_image)
if model_emotionestimator is not None:
emotion = face_emotion_estimator.estimate(frame, face_image)
###############################################################################
# FACE POSE ESTIMATION
###############################################################################
# Detect and draw face pose locations
if model_poseestimator is not None:
shape = face_pose_estimator.detect(frame, face)
face_pose_estimator.add_overlay(frame, shape)
else:
cv2.rectangle(frame, (x,y), (x+w,y+h), (255,255,255), 1)
# Display age, gender, emotion
if age is not None and gender is not None and emotion is not None:
cv2.putText(frame, "Age: {}".format(age),
(x, y-45), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(frame, "Gender: {}".format(gender),
(x, y-30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(frame, "Emotion: {}".format(emotion),
(x, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
# Display the resulting frame
cv2.imshow(WINDOW_NAME, frame)
# Update frame count
fps_frames += 1
if (framecount!=0 and fps_frames >= framecount):
break
# Check for user actions
keyPressed = cv2.waitKey(1) & 0xFF
if keyPressed == 27:
break
# Set the fps
fps = fps_frames / (time() - fps_start)
# Release the camera
cam_release(cap)
return fps
def save_video(saveVideo, out, resolution, filename):
if saveVideo == True:
print("video recording ended!")
out.release()
out = None
saveVideo = False
else:
print("video recording started...")
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
(h, w) = resolution
out = cv2.VideoWriter(filename, fourcc, 12, (w, h))
saveVideo = True
return saveVideo, out
def save_photo(frame, filename):
print("photo capture started...")
cv2.imwrite(filename, frame);
print("photo capture ended!")
def label_face(frame, face_rect, face_id, confidence, draw_box=True):
(x, y, w, h) = face_rect
if draw_box == True:
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 1)
if face_id is not None:
cv2.putText(frame, "{} {:.2f}%".format(face_id, confidence),
(x+5,y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
def process_facerecognition(cam_resolution, out_resolution, framecount, image=None, model_detector=0, model_recognizer=0):
# Initialize the camera
if image is not None:
cap = cv2.VideoCapture(image)
else:
cap = cam_init(cam_resolution[0], cam_resolution[1])
###############################################################################
# FACE DETECTION
###############################################################################
# Initialize face detection
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION, optimize=True)
###############################################################################
# FACE RECOGNITION
###############################################################################
# Initialize face recognizer
face_encoder = FaceEncoder(model=model_recognizer, path=INPUT_DIR_MODEL_ENCODING, path_training=INPUT_DIR_MODEL_TRAINING, training=False)
face_id, confidence = ("Unknown", 0)
# Initialize fps counter
fps_frames = 0
fps_start = time()
fps = 0
saveVideo = False
out = None
# Optimization
skip_frames = True
skip_frames_count = 0
skip_frames_set = 2
while (True):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == 0:
print("Unexpected error! " + image)
break
###############################################################################
# FACE DETECTION and FACE RECOGNITION
###############################################################################
# Detect and recognize each face in the images
# Resize to QVGA so that RPI we can have acceptable fps
if out_resolution is not None:
#frame = imutils.resize(frame, width=out_resolution[0])
(h, w) = image.shape[:2]
frame = cv2.resize(frame, (out_resolution[0], int(h * out_resolution[0] / float(w) )));
###############################################################################
# FACE DETECTION
###############################################################################
faces = face_detector.detect(frame)
for (index, face) in enumerate(faces):
(x, y, w, h) = face
###############################################################################
# FACE RECOGNITION
###############################################################################
face_id, confidence = face_encoder.identify(frame, (x, y, w, h))
# Set bounding box and text
label_face(frame, (x, y, w, h), face_id, confidence)
# Update frame count
fps_frames += 1
if (framecount!=0 and fps_frames >= framecount):
break
if (fps_frames % 30 == 29):
fps = fps_frames / (time() - fps_start)
fps_frames = 0
fps_start = time()
cv2.putText(frame, "FPS {:.2f}".format(fps),
(20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
# Save the frame to a video
if saveVideo:
out.write(frame)
# Display the resulting frame
cv2.imshow(WINDOW_NAME, frame)
# Check for user actions
keyPressed = cv2.waitKey(1) & 0xFF
if keyPressed == 27: # ESC
break
elif keyPressed == 32: # Space
saveVideo, out = save_video(saveVideo, out, frame.shape[:2], "facial_recognition_rpi3.avi")
# Set the fps
time_diff = time() - fps_start
if time_diff:
fps = fps_frames / time_diff
if image is not None:
cv2.waitKey(3000)
if saveVideo == True:
out.release()
# Release the camera
cam_release(cap)
return fps
def process_facerecognition_livenessdetection_poseagegenderemotion(cam_resolution, out_resolution, framecount, image=None, model_detector=0, model_recognizer=0):
from libfaceid.liveness import FaceLivenessDetectorModels, FaceLiveness
from libfaceid.pose import FacePoseEstimatorModels, FacePoseEstimator
from libfaceid.age import FaceAgeEstimatorModels, FaceAgeEstimator
from libfaceid.gender import FaceGenderEstimatorModels, FaceGenderEstimator
from libfaceid.emotion import FaceEmotionEstimatorModels, FaceEmotionEstimator
model_poseestimator = FacePoseEstimatorModels.DEFAULT
model_ageestimator = FaceAgeEstimatorModels.DEFAULT
model_genderestimator = FaceGenderEstimatorModels.DEFAULT
model_emotionestimator = FaceEmotionEstimatorModels.DEFAULT
# Initialize the camera
if image is not None:
cap = cv2.VideoCapture(image)
else:
cap = cam_init(cam_resolution[0], cam_resolution[1])
###############################################################################
# FACE DETECTION
###############################################################################
# Initialize face detection
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)#, optimize=True)
###############################################################################
# FACE RECOGNITION
###############################################################################
# Initialize face recognizer
face_encoder = FaceEncoder(model=model_recognizer, path=INPUT_DIR_MODEL_ENCODING, path_training=INPUT_DIR_MODEL_TRAINING, training=False)
###############################################################################
# EYE BLINKING DETECTOR
###############################################################################
# Initialize detector for blinking eyes
face_liveness = FaceLiveness(model=FaceLivenessDetectorModels.EYEBLINKING, path=INPUT_DIR_MODEL_ESTIMATION)
face_liveness.initialize()
(eye_counter, total_eye_blinks) = (0, 0)
###############################################################################
# FACE POSE/AGE/GENDER/EMOTION ESTIMATION
###############################################################################
# Initialize pose/age/gender/emotion estimation
if model_poseestimator is not None:
face_pose_estimator = FacePoseEstimator(model=model_poseestimator, path=INPUT_DIR_MODEL_ESTIMATION)
if model_ageestimator is not None:
face_age_estimator = FaceAgeEstimator(model=model_ageestimator, path=INPUT_DIR_MODEL_ESTIMATION)
if model_genderestimator is not None:
face_gender_estimator = FaceGenderEstimator(model=model_genderestimator, path=INPUT_DIR_MODEL_ESTIMATION)
if model_emotionestimator is not None:
face_emotion_estimator = FaceEmotionEstimator(model=model_emotionestimator, path=INPUT_DIR_MODEL_ESTIMATION)
(age, gender, emotion) = (None, None, None)
# Initialize fps counter
fps_frames = 0
fps_start = time()
fps = 0
saveVideo = False
out = None
while (True):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == 0:
print("Unexpected error! " + image)
break
###############################################################################
# FACE DETECTION and FACE RECOGNITION
###############################################################################
# Detect and recognize each face in the images
# Resize to QVGA so that RPI we can have acceptable fps
if out_resolution is not None:
#frame = imutils.resize(frame, width=out_resolution[0])
(h, w) = image.shape[:2]
frame = cv2.resize(frame, (out_resolution[0], int(h * out_resolution[0] / float(w) )));
###############################################################################
# FACE DETECTION
###############################################################################
faces = face_detector.detect(frame)
for (index, face) in enumerate(faces):
(x, y, w, h) = face
###############################################################################
# FACE AGE/GENDER/EMOTION ESTIMATION
###############################################################################
face_image = frame[y:y+h, h:h+w]
if model_ageestimator is not None:
age = face_age_estimator.estimate(frame, face_image)
if model_genderestimator is not None:
gender = face_gender_estimator.estimate(frame, face_image)
if model_emotionestimator is not None:
emotion = face_emotion_estimator.estimate(frame, face_image)
###############################################################################
# FACE RECOGNITION
###############################################################################
face_id, confidence = face_encoder.identify(frame, (x, y, w, h))
###############################################################################
# EYE BLINKING DETECTION
###############################################################################
total_eye_blinks, eye_counter = face_liveness.detect(frame, (x, y, w, h), total_eye_blinks, eye_counter)
###############################################################################
# FACE POSE ESTIMATION
###############################################################################
# Detect and draw face pose locations
if model_poseestimator is not None:
shape = face_pose_estimator.detect(frame, face)
face_pose_estimator.add_overlay(frame, shape)
# Display name, age, gender, emotion
cv2.putText(frame, "Age: {}".format(age),
(20, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(frame, "Gender: {}".format(gender),
(20, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(frame, "Emotion: {}".format(emotion),
(20, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(frame, "Name: {} [{:.2f}%]".format(face_id, confidence),
(20, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
###############################################################################
# EYE BLINKING DETECTION
###############################################################################
cv2.putText(frame, "Blinks: {}".format(total_eye_blinks), (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
# Update frame count
fps_frames += 1
if (framecount!=0 and fps_frames >= framecount):
break
if (fps_frames % 30 == 29):
fps = fps_frames / (time() - fps_start)
fps_frames = 0
fps_start = time()
cv2.putText(frame, "FPS {:.2f}".format(fps), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
# Save the frame to a video
if saveVideo:
out.write(frame)
# Display the resulting frame
cv2.imshow(WINDOW_NAME, frame)
# Check for user actions
keyPressed = cv2.waitKey(1) & 0xFF
if keyPressed == 27: # ESC
break
elif keyPressed == 32: # Space
saveVideo, out = save_video(saveVideo, out, frame.shape[:2], WINDOW_NAME + ".avi")
elif keyPressed == 13: # Enter
save_photo(frame, WINDOW_NAME + "_" + datetime.datetime.now().strftime("%Y%m%d_%H%M%S") + ".jpg")
# Set the fps
time_diff = time() - fps_start
if time_diff:
fps = fps_frames / time_diff
if image is not None:
cv2.waitKey(3000)
if saveVideo == True:
out.release()
# Release the camera
cam_release(cap)
return fps
def test_resolution_fps():
resolutions = [ RESOLUTION_QVGA, RESOLUTION_VGA, RESOLUTION_HD, RESOLUTION_FULLHD ] #3.5-4FPS 7.5-8.25FPS, 22-23FPS
frame_count = 100
for resolution in resolutions:
fps = process_webcam( resolution, None, frame_count )
print( "resolution = {}x{}\tfps = {:.2f}".format(resolution[0], resolution[1], fps) )
def test_detection_fps():
frame_count = 100
for i in range(len(FaceDetectorModels)):
fps = process_facedetection( RESOLUTION_QVGA, None, frame_count, model_detector = i )
print( "MODEL = {}\tfps = {:.2f}".format(i, fps) )
def test_recognition_fps():
frame_count = 100
for i in range(len(FaceDetectorModels)):
for j in range(len(FaceEncoderModels)):
fps = process_facerecognition( RESOLUTION_QVGA, None, 0, model_detector=i, model_recognizer=j)
print( "MODEL = {}x{}\tfps = {:.2f}".format(i, j, fps) )
def test():
# check webcam speed
test_resolution_fps()
# check face detection
test_detection_fps()
# check face recognition
test_recognition_fps()
def train_recognition(model_detector, model_encoder, model_classifier, verify):
ensure_directory(INPUT_DIR_DATASET)
ensure_directory(INPUT_DIR_MODEL_TRAINING)
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)
face_encoder = FaceEncoder(model=model_encoder, path=INPUT_DIR_MODEL_ENCODING, path_training=INPUT_DIR_MODEL_TRAINING, training=True)
face_encoder.train(face_detector, path_dataset=INPUT_DIR_DATASET, verify=verify, classifier=model_classifier)
def run():
# set models to use
detector=FaceDetectorModels.HAARCASCADE
# detector=FaceDetectorModels.DLIBHOG
# detector=FaceDetectorModels.DLIBCNN
# detector=FaceDetectorModels.SSDRESNET
# detector=FaceDetectorModels.MTCNN
# detector=FaceDetectorModels.FACENET
encoder=FaceEncoderModels.LBPH
# encoder=FaceEncoderModels.OPENFACE
# encoder=FaceEncoderModels.DLIBRESNET
# encoder=FaceEncoderModels.FACENET
classifier=FaceClassifierModels.NAIVE_BAYES
# classifier=FaceClassifierModels.LINEAR_SVM
# classifier=FaceClassifierModels.RBF_SVM
# classifier=FaceClassifierModels.NEAREST_NEIGHBORS
# classifier=FaceClassifierModels.DECISION_TREE
# classifier=FaceClassifierModels.RANDOM_FOREST
# classifier=FaceClassifierModels.NEURAL_NET
# classifier=FaceClassifierModels.ADABOOST
# classifier=FaceClassifierModels.QDA
# check face detection with pose estimation and age/gender classification
#fps = process_facedetection( RESOLUTION_QVGA, None, 0, model_detector=detector)
# check face recognition
train_recognition(detector, encoder, classifier, True)
#fps = process_facerecognition( RESOLUTION_QVGA, None, 0, model_detector=detector, model_recognizer=encoder)
fps = process_facerecognition_livenessdetection_poseagegenderemotion( RESOLUTION_QVGA, None, 0, model_detector=detector, model_recognizer=encoder)
print( "resolution = {}x{}\tfps = {:.2f}".format(RESOLUTION_QVGA[0], RESOLUTION_QVGA[1], fps) )
def main(args):
if sys.version_info < (3, 0):
print("Error: Python2 is slow. Use Python3 for max performance.")
return
if args.detector and args.encoder:
try:
detector = FaceDetectorModels(int(args.detector))
encoder = FaceEncoderModels(int(args.encoder))
classifier = FaceEncoderModels(int(args.classifier))
print( "Parameters: {} {} {}".format(detector, encoder, classifier) )
train_recognition(detector, encoder, classifier, True)
fps = process_facerecognition( RESOLUTION_QVGA, None, 0, model_detector=detector, model_recognizer=encoder)
print( "Result: {}x{} {:.2f} fps".format(RESOLUTION_QVGA[0], RESOLUTION_QVGA[1], fps) )
except:
print( "Invalid parameter" )
return
run()
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--detector', required=False,
help='Detector model to use.\nOptions: 0-HAARCASCADE, 1-DLIBHOG, 2-DLIBCNN, 3-SSDRESNET, 4-MTCNN, 5-FACENET')
parser.add_argument('--encoder', required=False,
help='Encoder model to use.\nOptions: 0-LBPH, 1-OPENFACE, 2-DLIBRESNET, 3-FACENET')
parser.add_argument('--classifier', required=False,
help='Classifier algorithm to use. Options: 0-NAIVE_BAYES, 1-LINEAR_SVM, 2-RBF_SVM, 3-NEAREST_NEIGHBORS, 4-DECISION_TREE, 5-RANDOM_FOREST, 6-NEURAL_NET, 7-ADABOOST, 8-QDA.')
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))