-
Notifications
You must be signed in to change notification settings - Fork 32
/
face_detection_hog_svn.py
168 lines (123 loc) · 5.44 KB
/
face_detection_hog_svn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Created on Wed Nov 28 14:58:11 2018
@author: keyur-r
This face detector is made using the now classic Histogram of Oriented
Gradients (HOG) feature combined with a linear classifier, an image
pyramid, and sliding window detection scheme. This type of object detector
is fairly general and capable of detecting many types of semi-rigid objects
in addition to human faces. Therefore, if you are interested in making
your own object detectors then read the train_object_detector.py(dlib) example
program.
To find faces in image -> python face_detection_hog_svn.py -i <input-image>
To find faces realtime -> python face_detection_hog_svn.py
"""
from imutils import face_utils
import dlib
import cv2
import argparse
import os
def write_to_disk(image, face_cordinates):
'''
This function will save the cropped image from original photo on disk
'''
for (x1, y1, w, h) in face_cordinates:
cropped_face = image[y1:y1 + h, x1:x1 + w]
cv2.imwrite(str(y1) + ".jpg", cropped_face)
def draw_fancy_box(img, pt1, pt2, color, thickness, r, d):
'''
To draw some fancy box around founded faces in stream
'''
x1, y1 = pt1
x2, y2 = pt2
# Top left
cv2.line(img, (x1 + r, y1), (x1 + r + d, y1), color, thickness)
cv2.line(img, (x1, y1 + r), (x1, y1 + r + d), color, thickness)
cv2.ellipse(img, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, thickness)
# Top right
cv2.line(img, (x2 - r, y1), (x2 - r - d, y1), color, thickness)
cv2.line(img, (x2, y1 + r), (x2, y1 + r + d), color, thickness)
cv2.ellipse(img, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, thickness)
# Bottom left
cv2.line(img, (x1 + r, y2), (x1 + r + d, y2), color, thickness)
cv2.line(img, (x1, y2 - r), (x1, y2 - r - d), color, thickness)
cv2.ellipse(img, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, thickness)
# Bottom right
cv2.line(img, (x2 - r, y2), (x2 - r - d, y2), color, thickness)
cv2.line(img, (x2, y2 - r), (x2, y2 - r - d), color, thickness)
cv2.ellipse(img, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, thickness)
def face_detection_realtime():
cap = cv2.VideoCapture(0)
while True:
# Getting out image by webcam
_, image = cap.read()
# Converting the image to gray scale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Get faces into webcam's image
rects = detector(gray, 0)
face_cordinates = []
# For each detected face
for (i, rect) in enumerate(rects):
# Finding points for rectangle to draw on face
x1, y1, x2, y2, w, h = rect.left(), rect.top(), rect.right() + \
1, rect.bottom() + 1, rect.width(), rect.height()
# https://stackoverflow.com/questions/46036477/drawing-fancy-rectangle-around-face
draw_fancy_box(image, (x1, y1), (x2, y2), (127, 255, 255), 2, 10, 20)
# Drawing simple rectangle around found faces
# cv2.rectangle(image, (x1, y1), (x1 + w, y1 + h), (0, 255, 0), 2)
face_cordinates.append((x1, y1, w, h))
# show the face number
cv2.putText(image, "Face #{}".format(i + 1), (x1 - 20, y1 - 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (51, 51, 255), 2)
# Show the image
cv2.imshow("Output", image)
# To capture found faces from camera
if cv2.waitKey(30) & 0xFF == ord('s'):
write_to_disk(image, face_cordinates)
if cv2.waitKey(30) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
cap.release()
def face_detection(image):
# Converting the image to gray scale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# The 1 in the second argument indicates that we should upsample the image
# 1 time. This will make everything bigger and allow us to detect more
# faces.
# Get faces from image
rects = detector(gray, 1)
# For each detected face, draw boxes.
for (i, rect) in enumerate(rects):
# Finding points for rectangle to draw on face
x1, y1, x2, y2, w, h = rect.left(), rect.top(), rect.right() + \
1, rect.bottom() + 1, rect.width(), rect.height()
# https://stackoverflow.com/questions/46036477/drawing-fancy-rectangle-around-face
draw_fancy_box(image, (x1, y1), (x2, y2), (127, 255, 255), 2, 10, 20)
# Drawing simple rectangle around found faces
# cv2.rectangle(image, (x1, y1), (x1 + w, y1 + h), (0, 255, 0), 2)
# show the face number
cv2.putText(image, "Face #{}".format(i + 1), (x1 - 20, y1 - 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (51, 51, 255), 2)
# Show the image
cv2.imshow("Output", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == "__main__":
# Please change your base path
HOME = "/home/keyur-r/image_data"
# handle command line arguments
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--image', required=False, help='Path to image file')
args = ap.parse_args()
# This is based on HOG + SVM classifier
detector = dlib.get_frontal_face_detector()
image = None
if args.image:
# load input image
img = os.path.join(HOME, args.image)
image = cv2.imread(img)
if image is None:
print("Real time face detection is starting ... ")
face_detection_realtime()
else:
print("Face detection for image")
face_detection(image)