-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathupdate_params.py
61 lines (47 loc) · 2.33 KB
/
update_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
import pdb
from compute_gradients import compute_gradients as compute_gradients_n
from compute_gradients_Compare import compute_gradients_compare
from projection_simplex import projection_simplex_sort as proj_simplex
def update_params(eta, z_data, A, alpha, w, k, b, t, z_range,lamda, newobject):
N,N,P = A.shape
N,M = k.shape
#for i in range(N): # this way of formulation is wrong (loop should be inside backward)
b_comparing = False # for debugging purposes. For normal execution must be false.
if b_comparing:
dC_dA, dc_dalpha, dc_dw, dc_dk, dc_db, cost,cost_test,hat_z_t = compute_gradients_compare( z_data, A, alpha, w, k, b, t,newobject)
else:
dC_dA, dc_dalpha, dc_dw, dc_dk, dc_db, cost,cost_test,hat_z_t = compute_gradients_n( z_data, A, alpha, w, k, b, t)
# projected SGD (stochastic gradient descent (OPTIMIZER)
alpha = alpha - eta* dc_dalpha
w = w - eta* dc_dw
k = k - eta* dc_dk
#A = A - eta*dC_dA - eta*lamda*A.sum()/abs(A).sum()
A = A - eta*dC_dA - eta*lamda*np.sign(A)
#pdb.set_trace()
# b[i] = b[i] - eta * dc_db_i TODO
if np.isnan(alpha).any() or np.isinf(alpha).any():
print('ERR: found inf or nan in alpha')
pdb.set_trace()
#PROJECTION
for i in range(N):
if (alpha[i,:].sum() != z_range[i]):
#projection using the code found online
try:
alpha[i][:] = proj_simplex(alpha[i][:], z_range[i])
except Exception:
print('ERR: exception at proj_simplex')
pdb.set_trace()
if abs(np.sum(alpha[i][:])-z_range[i]) > 1e-5:
print('ERR: projection failed!'); pdb.set_trace()
#kevins projection will not be used. We can keep the code here for comparison
# alpha1 = cp.Variable(M)
# cost_i2 = cp.sum_squares(alpha1 - alpha[i,:])
# obj = cp.Minimize(cost_i2)
# constr = [sum(alpha1) == z_range[i]]
# opt_val = cp.Problem(obj,constr).solve()
# alpha_cvxpy = np.transpose(alpha1.value)
#if (np.abs(alpha[i][:]-alpha_cvxpy)>1e-5).any():
# print('ERR: projections do not coincide!!'); pdb.set_trace()
#pdb.set_trace()
return A, alpha, w, k, b, cost,cost_test,hat_z_t