-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLinearVAR_Kevin.py
85 lines (63 loc) · 2.33 KB
/
LinearVAR_Kevin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import sys
sys.path.append('code_compare')
import numpy as np
#from LinearVAR import scaleCoefsUntilStable
#from generating import nonlinear_VAR_realization
#import matplotlib.pyplot as plt
import pdb
from compute_gradients_Linear import compute_gradients as compute_gradients_l
# need to modify yet making
#data generation remain Nonlinear
#investigate the need for updationg parameters for matrix A
#try to work it out for on your work sheet on ipad
def learn_model(NE,z_data, A_l,eta,lamda): #TODO: make A, alpha, w, k, b optional
N, T = z_data.shape
N2,N3,P = A_l.shape
assert N==N2 and N==N3
# document inputs
cost_history = np.zeros(NE)
cost_history_test = np.zeros(NE)
for epoch in range(NE):
print("Linear epoch",epoch)
cost = np.zeros(T)
cost_test = np.zeros(T)
hat_z_t = np.zeros((N,T))
for t in range(P, T):
dC_dA,cost[t],cost_test[t],hat_z_t[:,t] = compute_gradients_l(z_data, A_l, t)
A_l = A_l - eta*dC_dA - lamda * eta*np.sign(A_l)
cost_history[epoch] = sum(cost)/(N*T*0.8)
cost_history_test[epoch] = sum(cost_test)/(N*T*0.2)
return cost_history,cost_history_test,A_l,hat_z_t
p_test = False #see that p_test is false important while comparing with linear and nonilnear
#it is important to keep p_test false. because both n and nonlinear need same z_data we are o
#only taking learn_model linear function from this file.
if p_test:
N=3
M=3
T=10
P = 3
NE = 40
eta = 0.001
z_data = np.random.rand(N, T)
A_true = np.random.rand(N, N, P)
A_true = scaleCoefsUntilStable(A_true, tol = 0.05, b_verbose = False, inPlace=False)
#print ('A_true is: ', A_true)
alpha = np.ones((N,M))
w = np.ones((N,M))
k = np.ones((N,M))
b = np.ones((N))
#A = np.ones((N,N,P))
z_data = nonlinear_VAR_realization(A_true, T, np.cbrt, z_data)
#pdb.set_trace()
# plt.plot(z_data[0][:],label = 'sensor 1')
# plt.plot(z_data[1][:],label = "sensor 2")
# plt.plot(z_data[2][:],label = "sensor 3")
# plt.title("VAR with A matrix stabilization")
# plt.xlabel("Time")
# plt.ylabel("z_data")
# plt.legend()
# plt.show()
cost = learn_model(NE,z_data, A,eta)
t1 = np.arange(NE)+1
plt.plot(t1,cost)
plt.show()