-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLinearVAR.py
112 lines (90 loc) · 3.63 KB
/
LinearVAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import pdb
# class LinearVAR:
# def __init__(self, N, P):
# self.A = np.zeros([N, N, P])
# def forward(self, m_z_previous):
# # m_z_previous: {z[t-p]}, p=1..P
# N, P = m_z_previous.shape
# assert(N == self.A.shape[0])
# assert(P == self.A.shape[2])
# m_y_tilde = m_z_previous
# v_y_hat = np.zeros(N)
# for p in range(P):
# v_y_hat = v_y_hat + self.A[:,:, p] @ m_y_tilde[:,p] #!LEq(7)
# v_z_hat = v_y_hat
# return v_z_hat
# def compute_cost(self, v_z_hat, v_z_t):
# v_cost = (v_z_t - v_z_hat)**2
# total_cost = sum(v_cost) #!LEq(9)
# return total_cost
# def backward(self, m_z_previous, v_z_t, v_z_hat):
# N, P = m_z_previous.shape
# assert(N == self.A.shape[0])
# assert(P == self.A.shape[2])
# assert(N == v_z_t.shape[0])
# v_s = 2*(v_z_hat - v_z_t) #LEq(10b)
# dc_dA = np.zeros(self.A.shape)
# for i in range(N):
# for p in range(P):
# dc_dA[i,:,p] = v_s[i]*m_z_previous[:,p] #!LEq(25)
# return dc_dA
# def learn_linearVAR(m_z_train, P, nEpochs, eta, m_z_test):
# # similar code to that in learn_nonlinearVAR
# N, T = m_z_train.shape
# Nt, Tt = m_z_test.shape; assert(Nt == N)
# A_initial = np.zeros([N, N, P])
# nlv = LinearVAR(N, P)
# nlv.A = A_initial
# cost_train = np.zeros(nEpochs)
# cost_test = np.zeros(nEpochs)
# for epoch in range(nEpochs):
# print('Epoch ', epoch)
# cost_thisEpoch_t = np.zeros(T)
# #TEST (forward only)
# for tt in range(P, Tt): #TODO: reduce code repetition
# v_z_tt = m_z_test[:, tt]
# m_z_previous_t = np.zeros([N, P])
# for p in range(P):
# m_z_previous_t[:,p] = m_z_test[:,tt-1-p]
# v_z_hat_t = nlv.forward(m_z_previous_t)
# #pdb.set_trace()
# cost_thisEpoch_t[tt] = nlv.compute_cost(v_z_hat_t, v_z_tt)/N
# cost_test[epoch] = np.mean(cost_thisEpoch_t)
# #TRAIN (forward, backward, and SGD)
# cost_thisEpoch = np.zeros(T)
# for t in range(P, T):
# v_z_t = m_z_train[:, t]
# m_z_previous = np.zeros([N, P])
# for p in range(P):
# m_z_previous[:,p] = m_z_train[:,t-1-p]
# #
# v_z_hat = nlv.forward(m_z_previous)
# cost_thisEpoch[t] = nlv.compute_cost(v_z_hat, v_z_t)/N
# dc_dA = nlv.backward(m_z_previous, v_z_t, v_z_hat)
# nlv.A = nlv.A - eta*dc_dA
# cost_train[epoch] = np.mean(cost_thisEpoch)
# return nlv, cost_train, cost_test
def stabilityScore(m_A):
assert(m_A.ndim == 3)
N, N1, P = m_A.shape
assert(N==N1)
m_bigA = np.zeros((P*N, P*N))
m_upperRows = m_A.reshape([N, N*P])
m_bigA[0:N, :] = m_upperRows
m_bigA[N:, 0:N*(P-1)] = np.identity(N*(P-1))
eigenvalues, _ = np.linalg.eig(m_bigA)
return np.max(np.abs(eigenvalues))
def scaleCoefsUntilStable(t_A_in, tol = 0.05, b_verbose = False, inPlace=False):
# Takes a 3-way, NxNxP tensor t_A understood as VAR parameter matrices.
# Iteratively scales it down until it gives rise to a stable VAR process.
if inPlace:
t_A = t_A_in
else:
t_A = np.copy(t_A_in)
score = stabilityScore(t_A)
while score > 1-tol:
t_A = t_A*(1-tol/1.9)/(score+tol/1.9)
score = stabilityScore(t_A)
if b_verbose: print(score)
return t_A