-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpd.h
308 lines (284 loc) · 8.55 KB
/
dpd.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// This file is part of the ESPResSo distribution (http://www.espresso.mpg.de).
// It is therefore subject to the ESPResSo license agreement which you accepted upon receiving the distribution
// and by which you are legally bound while u tilizing this file in any form or way.
// There is NO WARRANTY, not even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// You should have received a copy of that license along with this program;
// if not, refer to http://www.espresso.mpg.de/license.html where its current version can be found, or
// write to Max-Planck-Institute for Polymer Research, Theory Group, PO Box 3148, 55021 Mainz, Germany.
// Copyright (c) 2002-2007; all rights reserved unless otherwise stated.
#ifndef DPD_H
#define DPD_H
/** \file dpd.h
* Routines to use dpd as thermostat or pair force
* T. Soddemann, B. Duenweg and K. Kremer, Phys. Rev. E 68, 046702 (2003)
* \ref forces.c
*/
#include "utils.h"
#include "thermostat.h"
#include "interaction_data.h"
/** DPD Friction coefficient gamma. */
extern double dpd_gamma;
/** DPD thermostat cutoff */
extern double dpd_r_cut;
/** DPD thermostat weight function */
extern int dpd_wf;
/** DPD transversal Friction coefficient gamma. */
extern double dpd_tgamma;
/** trans DPD thermostat cutoff */
extern double dpd_tr_cut;
/** trans DPD thermostat weight function */
extern int dpd_twf;
#ifdef DPD
extern double dpd_r_cut_inv;
extern double dpd_pref1;
extern double dpd_pref2;
#ifdef TRANS_DPD
extern double dpd_tr_cut_inv;
extern double dpd_pref3;
extern double dpd_pref4;
#endif
void dpd_parse_off(Tcl_Interp *interp, int argc, char **argv);
int thermo_parse_dpd(Tcl_Interp *interp, int argc, char **argv);
void dpd_print(Tcl_Interp *interp);
void thermo_init_dpd();
void dpd_usage(Tcl_Interp *interp, int argc, char **argv);
void dpd_heat_up();
void dpd_cool_down();
/** Calculate Random Force and Friction Force acting between particle
p1 and p2 and add them to their forces. */
MDINLINE void add_dpd_thermo_pair_force(Particle *p1, Particle *p2, double d[3], double dist, double dist2)
{
extern double dpd_gamma,dpd_pref1, dpd_pref2,dpd_r_cut,dpd_r_cut_inv;
extern int dpd_wf;
#ifdef TRANS_DPD
extern double dpd_tgamma, dpd_pref3, dpd_pref4,dpd_tr_cut,dpd_tr_cut_inv;
extern int dpd_twf;
#endif
int j;
// velocity difference between p1 and p2
double vel12_dot_d12=0.0;
// inverse distance
double dist_inv;
// weighting functions for friction and random force
double omega,omega2;// omega = w_R/dist
double friction, noise;
//Projection martix
#ifdef TRANS_DPD
int i;
double P_times_dist_sqr[3][3]={{dist2,0,0},{0,dist2,0},{0,0,dist2}},noise_vec[3];
double f_D[3],f_R[3];
#endif
double tmp;
#ifdef DPD_MASS
double massf;
#endif
#ifdef EXTERNAL_FORCES
// if any of the two particles is fixed in some direction then
// do not add any dissipative or stochastic dpd force part
// because dissipation-fluctuation theorem is violated
if ( (p1->l.ext_flag | p2->l.ext_flag) & COORDS_FIX_MASK) return;
#endif
#ifdef VIRTUAL_SITES
if (ifParticleIsVirtual(p1) || ifParticleIsVirtual(p2)) return;
#endif
#ifdef DPD_MASS_RED
massf=2*PMASS(*p1)*PMASS(*p2)/(PMASS(*p1)+PMASS(*p2));
#endif
#ifdef DPD_MASS_LIN
massf=0.5*(PMASS(*p1)+PMASS(*p2));
#endif
dist_inv = 1.0/dist;
if((dist < dpd_r_cut)&&(dpd_gamma > 0.0)) {
if ( dpd_wf == 1 ) //w_R=1
{
omega = dist_inv;
}
else //w_R=(1-r/r_c)
{
omega = dist_inv- dpd_r_cut_inv;
}
#ifdef DPD_MASS
omega*=sqrt(massf);
#endif
omega2 = SQR(omega);
//DPD part
// friction force prefactor
for(j=0; j<3; j++) vel12_dot_d12 += (p1->m.v[j] - p2->m.v[j]) * d[j];
friction = dpd_pref1 * omega2 * vel12_dot_d12;
// random force prefactor
noise = dpd_pref2 * omega * (d_random()-0.5);
for(j=0; j<3; j++) {
p1->f.f[j] += ( tmp = (noise - friction)*d[j] );
p2->f.f[j] -= tmp;
}
}
#ifdef TRANS_DPD
//DPD2 part
if ((dist < dpd_tr_cut)&&(dpd_tgamma > 0.0)){
if ( dpd_twf == 1 )
{
omega = dist_inv;
}
else
{
omega = dist_inv- dpd_tr_cut_inv;
}
#ifdef DPD_MASS
omega*=sqrt(massf);
#endif
omega2 = SQR(omega);
for (i=0;i<3;i++){
//noise vector
noise_vec[i]=d_random()-0.5;
// Projection Matrix
for (j=0;j<3;j++){
P_times_dist_sqr[i][j]-=d[i]*d[j];
}
}
for (i=0;i<3;i++){
//Damping force
f_D[i]=0;
//Random force
f_R[i]=0;
for (j=0;j<3;j++){
f_D[i]+=P_times_dist_sqr[i][j]*(p1->m.v[j] - p2->m.v[j]);
f_R[i]+=P_times_dist_sqr[i][j]*noise_vec[j];
}
//NOTE: velocity are scaled with time_step
f_D[i]*=dpd_pref3*omega2;
//NOTE: noise force scales with 1/sqrt(time_step
f_R[i]*=dpd_pref4*omega*dist_inv;
}
for(j=0; j<3; j++) {
tmp=f_R[j]-f_D[j];
p1->f.f[j] += tmp;
p2->f.f[j] -= tmp;
}
}
#endif
}
#endif
#ifdef INTER_DPD
void interdpd_heat_up();
void interdpd_cool_down();
void interdpd_parse_off();
int printinterdpdIAToResult(Tcl_Interp *interp, int i, int j);
int interdpd_set_params(int part_type_a, int part_type_b,
double gamma, double r_c, int wf,
double tgamma, double tr_c,
int twf);
int thermo_parse_interdpd(Tcl_Interp *interp, int argc, char ** argv);
int interdpd_parser(Tcl_Interp * interp,
int part_type_a, int part_type_b,
int argc, char ** argv);
void interdpd_init();
void interdpd_update_params(double pref2_scale);
MDINLINE void add_interdpd_pair_force(Particle *p1, Particle *p2, IA_parameters *ia_params,
double d[3], double dist, double dist2)
{
int j;
// velocity difference between p1 and p2
double vel12_dot_d12=0.0;
// inverse distance
double dist_inv;
// weighting functions for friction and random force
double omega,omega2;// omega = w_R/dist
double friction, noise;
//Projection martix
int i;
double P_times_dist_sqr[3][3]={{0,0,0},{0,0,0},{0,0,0}},noise_vec[3];
double f_D[3],f_R[3];
double tmp;
#ifdef DPD_MASS
double massf;
#endif
#ifdef EXTERNAL_FORCES
// if any of the two particles is fixed in some direction then
// do not add any dissipative or stochastic dpd force part
// because dissipation-fluctuation theorem is violated
if ( (p1->l.ext_flag | p2->l.ext_flag) & COORDS_FIX_MASK) return;
#endif
#ifdef DPD_MASS_RED
massf=2*PMASS(*p1)*PMASS(*p2)/(PMASS(*p1)+PMASS(*p2));
#endif
#ifdef DPD_MASS_LIN
massf=0.5*(PMASS(*p1)+PMASS(*p2));
#endif
P_times_dist_sqr[0][0]=dist2;
P_times_dist_sqr[1][1]=dist2;
P_times_dist_sqr[2][2]=dist2;
dist_inv = 1.0/dist;
if((dist < ia_params->dpd_r_cut)&&(ia_params->dpd_gamma > 0.0)) {
if ( dpd_wf == 1 )
{
omega = dist_inv;
}
else
{
omega = dist_inv - 1.0/ia_params->dpd_r_cut;
}
#ifdef DPD_MASS
omega*=sqrt(massf);
#endif
omega2 = SQR(omega);
//DPD part
// friction force prefactor
for(j=0; j<3; j++) vel12_dot_d12 += (p1->m.v[j] - p2->m.v[j]) * d[j];
friction = ia_params->dpd_pref1 * omega2 * vel12_dot_d12;
// random force prefactor
noise = ia_params->dpd_pref2 * omega * (d_random()-0.5);
for(j=0; j<3; j++) {
p1->f.f[j] += ( tmp = (noise - friction)*d[j] );
p2->f.f[j] -= tmp;
}
}
//DPD2 part
if ((dist < ia_params->dpd_tr_cut)&&(ia_params->dpd_tgamma > 0.0)){
if ( ia_params->dpd_twf == 1 )
{
omega = dist_inv;
}
else
{
omega = dist_inv- 1.0/ia_params->dpd_tr_cut;
}
#ifdef DPD_MASS
omega*=sqrt(massf);
#endif
omega2 = SQR(omega);
for (i=0;i<3;i++){
//noise vector
noise_vec[i]=d_random()-0.5;
// Projection Matrix
for (j=0;j<3;j++){
P_times_dist_sqr[i][j]-=d[i]*d[j];
}
}
for (i=0;i<3;i++){
//Damping force
f_D[i]=0;
//Random force
f_R[i]=0;
for (j=0;j<3;j++){
f_D[i]+=P_times_dist_sqr[i][j]*(p1->m.v[j] - p2->m.v[j]);
f_R[i]+=P_times_dist_sqr[i][j]*noise_vec[j];
}
//NOTE: velocity are scaled with time_step
f_D[i]*=ia_params->dpd_pref3*omega2;
//NOTE: noise force scales with 1/sqrt(time_step
f_R[i]*=ia_params->dpd_pref4*omega*dist_inv;
}
for(j=0; j<3; j++) {
tmp=f_R[j]-f_D[j];
p1->f.f[j] += tmp;
p2->f.f[j] -= tmp;
}
}
}
MDINLINE double interdpd_pair_energy(Particle *p1, Particle *p2, IA_parameters *ia_params,
double d[3], double dist)
{
return 0;
}
#endif
#endif