-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomforce.h
178 lines (150 loc) · 5.47 KB
/
comforce.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// This file is part of the ESPResSo distribution (http://www.espresso.mpg.de).
// It is therefore subject to the ESPResSo license agreement which you accepted upon receiving the distribution
// and by which you are legally bound while utilizing this file in any form or way.
// There is NO WARRANTY, not even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// You should have received a copy of that license along with this program;
// if not, refer to http://www.espresso.mpg.de/license.html where its current version can be found, or
// write to Max-Planck-Institute for Polymer Research, Theory Group, PO Box 3148, 55021 Mainz, Germany.
// Copyright (c) 2002-2009; all rights reserved unless otherwise stated.
/** \file comforce.h
* Routines to enable comforce
*/
#ifndef COMFORCE_H
#define COMFORCE_H
#include "utils.h"
#include "particle_data.h"
#include "statistics.h"
#include "parser.h"
#ifdef COMFORCE
MDINLINE int comforce_set_params(int part_type_a, int part_type_b,
int flag, int dir, double force, double fratio)
{
IA_parameters *data, *data_sym;
make_particle_type_exist(part_type_a);
make_particle_type_exist(part_type_b);
data = get_ia_param(part_type_a, part_type_b);
data_sym = get_ia_param(part_type_b, part_type_a);
if (!data || !data_sym)
return 1;
if (n_nodes > 1)
return 2;
/* COMFORCE should be symmetrically */
data_sym->COMFORCE_flag = data->COMFORCE_flag = flag;
data_sym->COMFORCE_dir = data->COMFORCE_dir = dir;
data_sym->COMFORCE_force = data->COMFORCE_force = force;
data_sym->COMFORCE_fratio = data->COMFORCE_fratio = fratio;
/* broadcast interaction parameters */
mpi_bcast_ia_params(part_type_a, part_type_b);
mpi_bcast_ia_params(part_type_b, part_type_a);
return 0;
}
MDINLINE int printcomforceIAToResult(Tcl_Interp *interp, int i, int j)
{
char buffer[TCL_DOUBLE_SPACE];
IA_parameters *data = get_ia_param(i, j);
sprintf(buffer,"%d",data->COMFORCE_flag);
Tcl_AppendResult(interp, "comforce ", buffer, " ", (char *) NULL);
sprintf(buffer,"%d",data->COMFORCE_dir);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->COMFORCE_force, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
Tcl_PrintDouble(interp, data->COMFORCE_fratio, buffer);
Tcl_AppendResult(interp, buffer, " ", (char *) NULL);
return TCL_OK;
}
MDINLINE int comforce_parser(Tcl_Interp * interp,
int part_type_a, int part_type_b,
int argc, char ** argv)
{
int flag, dir, change;
double force, fratio;
if (argc != 5) {
Tcl_AppendResult(interp, "comforce needs 4 parameters: "
"<comforce_flag> <comforce_dir> <comforce_force> <comforce_fratio>",
(char *) NULL);
return 0;
}
if (part_type_a == part_type_b) {
Tcl_AppendResult(interp, "comforce needs 2 different types ", (char *) NULL);
return 0;
}
/* copy comforce parameters */
if ((! ARG_IS_I(1, flag)) || (! ARG_IS_I(2, dir)) || (! ARG_IS_D(3, force)) || (! ARG_IS_D(4, fratio)) ) {
Tcl_AppendResult(interp, "comforce needs 2 INTEGER 1 DOUBLE parameter: "
"<comforce_flag> <comforce_dir> <comforce_force> <comforce_fratio>", (char *) NULL);
return 0;
}
change = 5;
switch (comforce_set_params(part_type_a, part_type_b, flag, dir, force, fratio)) {
case 1:
Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
return 0;
case 2:
Tcl_AppendResult(interp, "works only with a single CPU", (char *) NULL);
return 0;
}
return change;
}
MDINLINE void calc_comforce()
{
int t0,t1,k, j;
IA_parameters *ia_params;
double com0[3], com1[3], MofImatrix[9], diff[3];
double vect0[3], vect1[3], eva[3], eve[3], fvect[3];
Particle *p;
int i, np, c;
Cell *cell;
for (t0=0; t0<n_particle_types-1; t0++) {
for (t1=t0+1; t1<n_particle_types; t1++) {
ia_params = get_ia_param(t0,t1);
if(ia_params->COMFORCE_flag == 1) {
centermass(t0,com0);
centermass(t1,com1);
for (i = 0; i < 3; i++) {
diff[i]=com1[i]-com0[i];
}
momentofinertiamatrix(t0, MofImatrix);
k=calc_eigenvalues_3x3(MofImatrix, eva);
/* perpendicular force */
if(ia_params->COMFORCE_dir == 1) {
k=calc_eigenvector_3x3(MofImatrix,eva[0],eve);
/*By doing two vector products find radial axis along the target system */
vector_product(eve,diff,vect0);
vector_product(vect0,eve,vect1);
/* normalize vect1, return is fvect */
unit_vector(vect1,fvect);
} else {
/* parallel force */
k=calc_eigenvector_3x3(MofImatrix,eva[0],fvect);
}
/* orient it along the com vector */
if (scalar(fvect,diff) < 0.) {
for (i = 0; i < 3; i++) {
fvect[i] = -fvect[i];
}
}
/* Now apply the force */
for (c = 0; c < local_cells.n; c++) {
cell = local_cells.cell[c];
p = cell->part;
np = cell->n;
for(i = 0; i < np; i++) {
if(p[i].p.type==t0) {
for(j = 0; j < 3; j++) {
p[i].f.f[j] -= ia_params->COMFORCE_fratio * ia_params->COMFORCE_force * fvect[j];
}
}
if(p[i].p.type==t1) {
for(j = 0; j < 3; j++) {
p[i].f.f[j] += ia_params->COMFORCE_force * fvect[j];
}
}
}
}
/*end of force application */
}
}
}
}
#endif
#endif