-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmatrix_reduce_avx.cpp
1118 lines (947 loc) · 35.4 KB
/
matrix_reduce_avx.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// Created by kent on 12/18/2020.
//
#include <vector>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <immintrin.h>
#include "profile.h"
#include "memory_usage.h"
#include "matrix_reduce_avx.h"
extern bool __record;
extern int __deg;
extern int __nn1;
extern int __nn2;
namespace MatrixReduceAVX {
using std::vector;
using std::sort;
using std::swap;
using std::pair;
using std::make_pair;
using std::min;
static bool do_sort = true;
static int sort_freq = 50;
static bool do_shrink = true;
static int shrink_freq = 1000;
static bool use_replay = false;
typedef unsigned char uint8_t;
static uint8_t _prime_ = 251;
static uint16_t _d_;
static uint32_t _c_;
#define DEBUG_MATRIX 0
//class Scalar {
//
//};
static inline uint8_t modp(int x) {
if (x == 0) return 0;
// return x % _prime_;
uint32_t t = _c_ * x;
return ((__uint64_t) t * _d_) >> 32;
// return x % 251;
}
class TruncatedDenseRow {
public:
TruncatedDenseRow() : start_col(0), fc(0), nz(0), sz(0), d(nullptr) {}
TruncatedDenseRow(const TruncatedDenseRow &r) = default;
TruncatedDenseRow &operator=(const TruncatedDenseRow &r) {
if (this != &r) {
start_col = r.start_col;
fc = r.fc;
nz = r.nz;
sz = r.sz;
d = r.d;
}
return *this;
};
int start_col;
int fc;
int nz;
int sz;
uint8_t *d;
void clear() {
start_col = 0;
fc = 0;
nz = 0;
sz = 0;
delete[] d;
d = nullptr;
}
inline bool empty() const { return !d || sz == 0 || nz == 0; }
inline uint8_t first_element() const {
return d ? d[fc] : 0;
}
inline uint8_t element(int col) const {
if (start_col <= col && col < start_col + sz) {
return d[col - start_col];
}
return 0;
}
inline void multiply(uint8_t s) {
for (int i = fc; i < sz; i++) {
if (d[i]) {
d[i] = modp(d[i] * s);
}
}
}
inline TruncatedDenseRow copy() const {
TruncatedDenseRow dst;
if (sz > 0) {
dst.start_col = start_col + fc;
dst.fc = 0;
dst.nz = nz;
dst.sz = sz - fc;
dst.d = new uint8_t[dst.sz];
memcpy(dst.d, d + fc, dst.sz);
// if (fc > 0) {
// printf("%d/%d saved\n", fc, sz - fc);
// }
}
return dst;
}
inline void shrink() {
if (sz > 0 && fc > 0) {
auto d_ = d;
int sz_ = sz;
sz = sz - fc;
d = new uint8_t[sz];
memcpy(d, d_ + fc, sz);
start_col += fc;
fc = 0;
// nz = nz;
delete[] d_;
// printf("%d/%d saved (shrunk)\n", sz_ - sz, sz_);
}
}
};
static void swap(TruncatedDenseRow &r1, TruncatedDenseRow &r2) {
swap(r1.start_col, r2.start_col);
swap(r1.fc, r2.fc);
swap(r1.nz, r2.nz);
swap(r1.sz, r2.sz);
swap(r1.d, r2.d);
}
struct stats {
//size_t n_zero_elements;
size_t n_elements;
size_t capacity;
size_t n_zero_rows;
size_t n_rows;
size_t n_cols;
int last_nextstairrow;
int prev_col;
int cur_col;
time_t first_update;
time_t prev_update;
time_t cur_update;
stats() : // n_zero_elements(0),
n_elements(0),
capacity(0),
n_zero_rows(0),
n_rows(0),
n_cols(0),
last_nextstairrow(0),
prev_col(0),
cur_col(0),
first_update(0),
prev_update(0),
cur_update(0) {}
void clear() {
//n_zero_elements = 0;
n_elements = 0;
capacity = 0;
n_zero_rows = 0;
n_rows = 0;
n_cols = 0;
last_nextstairrow = 0;
// These are not reset between updates because they are used
// to calculate rates.
//prev_col = 0;
//cur_col = 0;
//first_update = 0;
//prev_update = 0;
//cur_update = 0;
}
static void tp(float t) {
if (t > 3600) {
printf("%.02fh", t / 3600.);
} else if (t > 60) {
printf("%.02fm", t / 60.);
} else {
printf("%.02fs", t);
}
}
void print() const {
printf("\r\t\tne:%lu (%.1fMB)", n_elements, n_elements * sizeof(uint8_t) / 1024. / 1024.);
#if 0
if(n_zero_elements > 0) {
printf(" ze:%lu", n_zero_elements);
}
#endif
if (n_elements != capacity) {
printf(" ce:%lu (%.1fMB)", capacity, capacity * sizeof(uint8_t) / 1024. / 1024.);
}
printf(" zr:%lu lr:%d/%lu lc:%d/%lu",
n_zero_rows,
last_nextstairrow, n_rows,
cur_col, n_cols);
{
time_t dt = cur_update - first_update;
if (dt > 0) {
printf(" tt:");
tp(dt);
}
}
if (cur_col > 100) {
int dt = cur_update - prev_update;
if (dt != 0) {
float cps = (cur_col - prev_col + 1) / float(dt);
printf(" cps:%.02f", cps);
float eta = (n_cols - cur_col) / cps;
if (eta > 1) {
printf(" etr:");
tp(eta);
}
}
}
printf(" ");
fflush(nullptr);
}
void update(const vector<TruncatedDenseRow> &SM, int nextstairrow_, int last_col_, int nCols_, int timeout = -1,
bool do_print = false) {
time_t t = time(nullptr);
if (timeout != -1 && cur_update != 0 && t - cur_update < timeout) {
return;
}
clear();
if (first_update == 0) {
first_update = t;
}
prev_update = cur_update;
cur_update = t;
n_rows = SM.size();
n_cols = nCols_;
last_nextstairrow = nextstairrow_;
prev_col = cur_col;
cur_col = last_col_;
for (int ii = 0; ii < (int) SM.size(); ii++) {
capacity += SM[ii].sz;
n_elements += SM[ii].nz;
if (SM[ii].empty()) {
n_zero_rows++;
}
#if 0
// There should be no zero elements
for(int jj=0; jj<(int)SM[ii].size(); jj++) {
if(SM[ii][jj].getElement() == S_zero()) {
n_zero_elements++;
}
}
#endif
}
if (do_print) {
print();
}
}
};
static void save_mat_image(int a, int b, int c, const vector<TruncatedDenseRow> &rows, int nCols) {
int mh = rows.size();
int mw = nCols;
if (mh * mw == 0) return;
const int iih = 2160;
const int iiw = 3840;
int ih = min(mh, iih);
int iw = min(mw, iiw);
// if(mh < ih || mw < iw) return;
auto img = new unsigned char[ih * iw]();
for (int r = 0; r < (int) rows.size(); r++) {
for (int j = rows[r].fc; j < nCols; j++) {
if (rows[r].element(j) != 0) {
int col = j;
int y = r;
int x = col;
if (ih < mh) y = int(y / float(mh) * ih);
if (iw < mw) x = int(x / float(mw) * iw);
//if(x >= iw) abort();
//if(y >= ih) abort();
if (img[y * iw + x] < 255) {
img[y * iw + x]++;
}
}
}
}
#if 0
int mv = 0;
for (int i = 0; i < ih * iw; i++) {
mv = max(int(img[i]), mv);
}
for (int i = 0; i < ih * iw; i++) {
if (img[i] != 0) {
img[i] = int(float(img[i]) / float(mv) * (255 - 63) + 63 + .5);
}
}
#else
for (int i = 0; i < ih * iw; i++) {
if (img[i]) {
img[i] = 255;
}
}
#endif
{
int s = 1;
if (ih >= iw) {
s = iih / ih;
} else {
s = iih / iw;
}
if(s > 1) {
int hoff = (iih - s * ih) / 2;
int woff = (iiw - s * iw) / 2;
auto s_img = new unsigned char[iih * iiw]();
for (int i = 0; i < ih; i++) {
for (int j = 0; j < iw; j++) {
for (int ii = 0; ii < s; ii++) {
for (int jj = 0; jj < s; jj++) {
s_img[((i * s + hoff + ii) * iiw) + woff + j * s + jj] = img[i * iw + j];
}
}
}
}
delete[] img;
img = s_img;
ih = iih;
iw = iiw;
}
}
char fn[128];
static int ind = 0;
//sprintf(fn, "%d_%d_%d__%d_%d_%d__%d.pgm", __deg, __nn1, __nn2, a, b, c, ind);
sprintf(fn, "%08d_%03d_%03d_%03d_%06d_%06d.pgm", ind, __deg, __nn1, __nn2, c, nCols);
ind++;
FILE *f = fopen(fn, "wb");
fprintf(f, "P5\n%d %d 255\n", iw, ih);
fwrite(img, 1, ih * iw, f);
fclose(f);
delete[] img;
}
static bool TDR_sort(const TruncatedDenseRow &r1, const TruncatedDenseRow &r2) {
if (r1.empty()) return false;
if (r2.empty()) return true;
if (r1.start_col + r1.fc < r2.start_col + r2.fc) return true;
if (r1.start_col + r1.fc > r2.start_col + r2.fc) return false;
#if 1
// Generally results in greater sparsity
if (r1.nz < r2.nz) return true;
if (r1.nz > r2.nz) return false;
#else
// Generally results in greater density, i.e. more non-zero intermediate entries
if (r1.nz > r2.nz) return true;
if (r1.nz < r2.nz) return false;
#endif
if (r1.first_element() < r2.first_element()) return true;
// if (r1.first_element() > r2.first_element()) return false;
return false;
}
static uint8_t _inv_table[256] = {0};
static inline uint8_t S_inv(uint8_t x) {
return _inv_table[x];
}
static inline uint8_t S_minus(uint8_t x) {
return modp(_prime_ - x);
}
static inline uint8_t S_mul(uint8_t x, uint8_t y) {
return (x && y) ? modp(x * y) : 0;
// return (!x || !y) ? 0 : modp(x * y);
// return modp(x * y);
}
static inline uint8_t S_add(uint8_t x, uint8_t y) {
return modp(x + y);
}
static inline __m256 avx_load(const __m128i *p) {
// load 64-bit integer (8 8-bit values) into first half of destination
__m128i v = _mm_loadl_epi64(p);
// Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers
// Zero extend: fill the higher bits with zeros, instead of copying sign bit.
__m256i v32 = _mm256_cvtepu8_epi32(v);
// Convert 8 32-bit integers into 32-bit floats
return _mm256_cvtepi32_ps(v32);
}
static inline void avx_ff(const uint8_t *r2p, int r2i, const uint8_t *r1p, int r1i,
const __m256 &_k, const __m256 &_p, const __m256 &_s,
__m256i *results, int n) {
for (int ii = 0; ii < n; ii++) {
__m256 _r2 = avx_load((__m128i const *) (r2p + r2i + ii * 8));
__m256 _r1 = avx_load((__m128i const *) (r1p + r1i + ii * 8));
// float x = r2.d[r2i] + s * r1.d[r1i];
__m256 _x = _mm256_add_ps(_r2, _mm256_mul_ps(_s, _r1));
// Calculate x2 = x - int(x / _prime_) * _prime_, in two steps:
// float x2 = int(x / _prime_);
// using multiplication with 1/_prime_, avoiding far slower division.
// The rounding mode (truncate, and suppress exceptions) replicates C's truncation.
// This should work...
// __m256 _x2 = _mm256_round_ps(_mm256_mul_ps(_x, _k), _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);
// printf("%f = %f %f\n", ((float*)&_x2)[0], ((float*)&_x)[0], ((float*)&_k)[0]);
// but there are times when 1 / x * x are slightly less than 1, so we
// need to add a small amount to ensure truncation results in expected value.
// minimum that works with all primes in range [2, 251]
// __m256 _x2 = _mm256_round_ps(_mm256_add_ps(_mm256_set1_ps(.000008), _mm256_mul_ps(_x, _k)), _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);
// maximum that works with all primes in range [2, 251]
// __m256 _x2 = _mm256_round_ps(_mm256_add_ps(_mm256_set1_ps(.0039749), _mm256_mul_ps(_x, _k)), _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);
// Selected adjustment value, 4 times the minimum value. No justification over simply using the minimum.
__m256 _x2 = _mm256_round_ps(_mm256_add_ps(_mm256_set1_ps(.000008 * 4), _mm256_mul_ps(_x, _k)),
_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);
// x2 = x - x2 * _prime_;
_x2 = _mm256_sub_ps(_x, _mm256_mul_ps(_x2, _p));
results[ii] = _mm256_cvtps_epi32(_x2);
}
}
static void add_row(uint8_t s, const TruncatedDenseRow &r1, TruncatedDenseRow &r2, bool allow_shrinking = true) {
// r2 = r2 + s * r1
// where -s is the value of r2 in the leading column of r1
if (s == 0) {
return;
}
int r1i = 0;
int r2i = 0;
r2.nz = 0;
// Align pointers to the shared start columns
if (r1.start_col < r2.start_col) {
r1i = r2.start_col - r1.start_col;
} else if (r2.start_col < r1.start_col) {
r2i = r1.start_col - r2.start_col;
for (int i = r2.fc; i < r2i; i++) {
if (r2.d[i]) r2.nz++;
}
}
{
// Advance both pointers, skipping leading zeros or terms that will not
// create a changed. May be possible to merge this code with the
// start column alignment code, though improvement
// Advance both pointers by the number of proceeding shared zeros. No need to update r2.nz.
{
int n = min(r1.fc - r1i, r2.fc - r2i);
if (n > 0) {
r1i += n;
r2i += n;
}
}
// Advance both pointers by the number of proceeding zeros in r1.
// These terms will not change r2, but r2.nz needs to be updated.
if (r1i < r1.fc) {
// Able to skip.
// r2 = r2 + s * r1
// Skipped region of r2, is a stretch of zeros in r1, which can not create a change to r1.
int n = r1.fc - r1i;
r1i += n;
for (int i = 0; i < n; i++, r2i++) {
if (r2.d[r2i]) r2.nz++;
}
}
// if (r2i < r2.fc) {
// // Unable to do anything.
// // r2 = r2 + s * r1
// // r2 could update, can't skip zeros of r2, while skipping non-zeros of r1
// }
}
{
const __m256 _k = _mm256_set1_ps(1.0f / _prime_);
const __m256 _p = _mm256_set1_ps(_prime_);
const __m256 _s = _mm256_set1_ps(s);
const __m256i _z3 = _mm256_setzero_si256();
for (; r1i < r1.sz - 31; r1i += 32, r2i += 32) {
__m256i results[4];
avx_ff(r2.d, r2i, r1.d, r1i, _k, _p, _s, results, 4);
{
// convert two eight 32-bit integers to 16 16-bit integers using signed saturation
// stored A[0:3]B[0:3]A[4:7]B[4:7]
__m256i ab = _mm256_packs_epi32(results[0], results[1]);
__m256i cd = _mm256_packs_epi32(results[2], results[3]);
// convert two 16 signed 16-bit integers to 32 8-bit integers using unsigned saturation
// stored A[0:7]B[0:7]A[8:15]B[8:15]
// stored ACBD
__m256i abcd = _mm256_packus_epi16(ab, cd);
// shuffle 32-bit integers across lanes using the corresponding index in idx
// _mm256_setr_epi32 sets 8 32-bit values in reverse order, there's also _mm256_set_epi32(...)
__m256i lanefix = _mm256_permutevar8x32_epi32(abcd, _mm256_setr_epi32(0, 4, 1, 5, 2, 6, 3, 7));
__m256i _c = _mm256_cmpeq_epi8(lanefix, _z3);
int mask = _mm256_movemask_epi8(_c);
// count number of bits set in 32-bit integer
r2.nz += 32 - _mm_popcnt_u32(mask);
_mm256_storeu_si256((__m256i *) (r2.d + r2i), lanefix);
}
}
for (; r1i < r1.sz - 15; r1i += 16, r2i += 16) {
__m256i results[2];
avx_ff(r2.d, r2i, r1.d, r1i, _k, _p, _s, results, 2);
{
__m256i ab = _mm256_packs_epi32(results[0], results[1]);
__m256i abcd = _mm256_packus_epi16(ab, ab);
__m256i lanefix = _mm256_permutevar8x32_epi32(abcd, _mm256_setr_epi32(0, 4, 1, 5, 2, 6, 3, 7));
__m256i _c = _mm256_cmpeq_epi8(lanefix, _z3);
_c = _mm256_and_si256(_c,
_mm256_setr_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0, 0, 0,
0));
int mask = _mm256_movemask_epi8(_c);
r2.nz += 16 - _mm_popcnt_u32(mask);
__m128i r = _mm256_castsi256_si128(lanefix);
_mm_storeu_si128((__m128i *) (r2.d + r2i), r);
}
}
for (; r1i < r1.sz - 7; r1i += 8, r2i += 8) {
__m256i results[1];
avx_ff(r2.d, r2i, r1.d, r1i, _k, _p, _s, results, 1);
{
__m256i ab = _mm256_packs_epi32(results[0], results[0]);
__m256i abcd = _mm256_packus_epi16(ab, ab);
__m256i lanefix = _mm256_permutevar8x32_epi32(abcd, _mm256_setr_epi32(0, 4, 1, 5, 2, 6, 3, 7));
__m256i _c = _mm256_cmpeq_epi8(lanefix, _z3);
_c = _mm256_and_si256(_c, _mm256_setr_epi32(0xffffffff, 0xffffffff, 0, 0, 0, 0, 0, 0));
int mask = _mm256_movemask_epi8(_c);
r2.nz += 8 - _mm_popcnt_u32(mask);
__m128i r = _mm256_castsi256_si128(lanefix);
_mm_storel_epi64((__m128i *) (r2.d + r2i), r);
}
}
}
// perform calculations on remaining values
for (; r1i < r1.sz; r1i++, r2i++) {
// r2.d[r2i] = S_add(r2.d[r2i], S_mul(s, r1.d[r1i]));
// r2.d[r2i] = modp(r2.d[r2i] + s * r1.d[r1i]);
if (r2.d[r2i] == 0) { r2.d[r2i] = modp(s * r1.d[r1i]); }
else if (r1.d[r1i] == 0) {}
// else { r2.d[r2i] = modp(r2.d[r2i] + modp(s * r1.d[r1i])); }
else { r2.d[r2i] = modp(r2.d[r2i] + s * r1.d[r1i]); }
if (r2.d[r2i]) r2.nz++;
}
if (allow_shrinking && r2.nz == 0) r2.clear();
for (auto p = r2.d + r2.fc; r2.fc < r2.sz - 1 && *p == 0; r2.fc++, p++) {
}
// if (r2.sz > r2.nz * 2) // convert to sparserow?
// if (r2.fc > r2.sz / 2) r2.shrink();
}
static vector<pair<pair<int, int>, TruncatedDenseRow> > replay;
static void knock_out(vector<TruncatedDenseRow> &rows, int r, int c, int last_row) {
uint8_t x = rows[r].element(c);
if (x != 1) {
rows[r].multiply(S_inv(x));
}
int s = 0;
if (use_replay) {
replay.push_back(make_pair(make_pair(r, c), rows[r].copy()));
s = r + 1;
}
#if 0
#pragma omp parallel for shared(rows, s, r, c, last_row) schedule(dynamic, 10) default(none)
for (int j = s; j < last_row; j++) {
if (j != r) {
add_row(S_minus(rows[j].element(c)), rows[r], rows[j]);
}
}
#else
// Could reuse work from earlier that examined rows with non-zero values in column c.
vector<int> rr;
rr.reserve(last_row);
for (int j = s; j < last_row; j++) {
if (j != r && rows[j].element(c) != 0) {
rr.push_back(j);
}
}
// printf("%d -> %d\n", last_row, rr.size());
//#pragma omp parallel for shared(rows, s, r, c, last_row, rr) schedule(dynamic, 10) default(none)
// int n00 = rr.size() / 16 + 1;
//#pragma omp parallel for shared(rows, s, r, c, last_row, rr, n00) schedule(static, n00) default(none)
#pragma omp parallel for shared(rows, s, r, c, last_row, rr) default(none)
for (int jj = 0; jj < rr.size(); jj++) {
int j = rr[jj];
add_row(S_minus(rows[j].element(c)), rows[r], rows[j]);
}
#if 0
for (int jj = 0; jj < rr.size(); jj++) {
int j = rr[jj];
auto &r2 = rows[j];
if (r2.fc > r2.sz / 2) r2.shrink();
}
#endif
#endif
#if 0
{
int a = 0;
int b = 0;
for (int j = s; j < last_row; j++) {
auto &row = rows[j];
// printf("%d %d: %d / %d vs %d\n", c, j, row.nz, row.sz, row.nz * 4);
row.shrink();
a += row.sz;
b += row.nz;
}
printf("%d: %d / %d = %.2f %d / (4 x %d) = %.2f\n",
c, a, b,
float(a) / float(b), a, 4 * b,
float(a) / (4 * float(b)));
}
#endif
}
static void set_prime(uint8_t prime) {
_prime_ = prime;
_d_ = _prime_;
_c_ = (~(0U)) / _d_ + 1;
for (uint8_t i = 1; i < _prime_; i++) {
for (uint8_t j = 1; j < _prime_; j++) {
if (S_mul(i, j) == 1) {
_inv_table[i] = j;
break;
}
}
}
}
void do_tests() {
uint8_t saved_prime = _prime_;
#if 1
uint8_t primes[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
239, 241, 251};
#else
uint8_t primes[] = {239, 241, 251};
#endif
printf("Starting tests...\n");
for (int ii = 0; ii < sizeof(primes); ii++) {
bool no_go = false;
uint8_t p = primes[ii];
printf("Testing prime %d\n", p);
set_prime(p);
for (int a = 0; a < p; a++) {
for (int b = 0; b < p; b++) {
for (int s = 0; s < p; s++) {
uint8_t r = (a + (s * b) % _prime_) % _prime_;
uint8_t r2 = (a + s * b) % _prime_;
if (r != r2) {
printf("one_mod1 %d %d %d %d %d %d\n", p, a, b, s, r, r2);
}
}
}
}
for (int a = 0; a < p; a++) {
for (int b = 0; b < p; b++) {
for (int s = 0; s < p; s++) {
uint8_t r = S_add(b, S_mul(S_minus(s), a));
uint8_t r2 = (b + S_minus(s) * a) % _prime_;
if (r != r2) {
printf("one_mod %d %d %d %d %d %d\n", p, a, b, s, r, r2);
}
}
}
}
// puts("Check 1 done");
for (int a = 0; a < p; a++) {
uint8_t c0 = (p - a) % p;
uint8_t c1 = S_minus(a);
if (c0 != c1) {
printf("%d: S_minus(%d) = %d != %d\n", p, a, c1, c0);
}
for (int b = 0; b < p; b++) {
{
uint8_t c0 = (a * b) % p;
uint8_t c1 = S_mul(a, b);
if (c0 != c1) {
printf("%d: S_mul(%d, %d) = %d != %d\n", p, a, b, c1, c0);
}
}
{
uint8_t c0 = (a + b) % p;
uint8_t c1 = S_add(a, b);
if (c0 != c1) {
printf("%d: S_add(%d, %d) = %d != %d\n", p, a, b, c1, c0);
}
}
}
}
// puts("Check 2 done");
for (int a = 0; a < p; a++) {
uint8_t c0 = (p - a) % p;
uint8_t c1 = S_minus(a);
if (c0 != c1) {
printf("%d: S_minus(%d) = %d != %d\n", p, a, c1, c0);
}
TruncatedDenseRow A;
A.start_col = 0;
A.sz = 32 + 16 + 8 + 1;
A.d = new uint8_t[A.sz]();
A.fc = 0;
A.nz = A.sz;
for (int i = 0; i < A.sz; i++) {
A.d[i] = a;
}
// continue;
for (int b = 0; b < p; b++) {
TruncatedDenseRow B;
B.start_col = 0;
B.sz = 32 + 16 + 8 + 1;
B.d = new uint8_t[B.sz]();
B.fc = 0;
B.nz = B.sz;
for (int i = 0; i < B.sz; i++) {
B.d[i] = b;
}
for (int s = -p + 1; s < p; s++) {
// for(int s=0; s<p; s++) {
// r2 = r2 + s * r1
// where -s is the value of r2 in the leading column of r1
TruncatedDenseRow B2 = B.copy();
add_row(S_minus(s), A, B2, false);
uint8_t r = S_add(b, S_mul(S_minus(s), a));
for (int i = 1; i < B2.sz; i++) {
if (B2.d[0] != B2.d[i]) {
printf("yikes p=%d a=%d b=%d s=%d -s=%d i=%d B2[0]=%d B2[i]=%d\n", p, a, b, s,
S_minus(s), i, B2.d[0], B2.d[i]);
no_go = true;
}
}
if (r != B2.d[0]) {
puts("yikes2");
no_go = true;
}
if (r != B2.d[B2.sz - 1]) {
puts("yikes3");
no_go = true;
}
B2.clear();
if (no_go) break;
}
B.clear();
if (no_go) break;
}
A.clear();
if (no_go) break;
}
// puts("Check 3 done");
}
set_prime(saved_prime);
puts("Checks complete");
exit(1);
}
void matrix_reduce_avx(vector<TruncatedDenseRow> &rows, int n_cols) {
if (use_replay) replay.reserve(rows.size());
if (do_sort) sort(rows.begin(), rows.end(), TDR_sort);
stats s1;
s1.update(rows, 0, 0, n_cols, -1, true);
float nper = .1;
if (__record) {
save_mat_image(0, 0, 0, rows, n_cols);
}
int nextstairrow = 0;
int last_row = rows.size();
for (int i = 0; i < n_cols; i++) {
// Profile p2("total");
memory_usage_update(i);
#if 0
int j;
for (j = nextstairrow; j < last_row; j++) {
if (rows[j].element(i) != 0) {
break;
}
}
#else
int j;
{
int j0 = -1;
int nz0 = 0;
for (j = nextstairrow; j < last_row; j++) {
if (rows[j].element(i) != 0) {
// Selecting the row with the least number of non-zeros tends to be best, as it tends to produce
// less non-zero values during reduction.
if (j0 == -1 || nz0 > rows[j].nz) {
j0 = j;
nz0 = rows[j].nz;
}
}
}
j = j0 != -1 ? j0 : last_row;
}
#endif
#if DEBUG_MATRIX
{
printf("\nCol:%d/%d j:%d nextstairrow:%d nRows:%d reducing?:%d\n", i, n_cols, j, nextstairrow, rows.size(), j < (int) rows.size());
for (int i = 0; i < (int) rows.size(); i++) {
for (int j = 0; j < (int) n_cols; j++) {
uint8_t s = rows[i].element(j);
printf(" %3d", s);
}
putchar('\n');
}
}
#endif
if (j < last_row) {
swap(rows[nextstairrow], rows[j]);
#if DEBUG_MATRIX
{
printf("\nAfter swap\n");
for (int i = 0; i < (int) rows.size(); i++) {
for (int j = 0; j < (int) n_cols; j++) {
uint8_t s = rows[i].element(j);
printf(" %3d", s);
}
putchar('\n');
}
}
#endif
knock_out(rows, nextstairrow, i, last_row);
for (; last_row > 0; last_row--) {
if (!rows[last_row - 1].empty()) {
break;
}
}
#if DEBUG_MATRIX
{
printf("\nDone\n");
for (int i = 0; i < (int) rows.size(); i++) {
for (int j = 0; j < (int) n_cols; j++) {
uint8_t s = rows[i].element(j);
printf(" %3d", s);
}
putchar('\n');
}
}
#endif
{
if (do_shrink && i % shrink_freq == 0) {
// Profile p("shrink2");
for (int i = 0; i < (int) rows.size(); i++) {
auto &r2 = rows[i];
if (r2.fc > r2.sz / 2) r2.shrink();
}
}
}
{
// Profile p2("sort1");
if (do_sort && i % sort_freq == 0) {
// Profile p("sort2");
if (nextstairrow + 1 < last_row) {
sort(rows.begin() + nextstairrow + 1, rows.begin() + last_row, TDR_sort);
}
}
}
nextstairrow++;
}
if (__record && (i / float(n_cols) > nper)) {
nper += .1;
if (nextstairrow + 1 < last_row) {
sort(rows.begin() + nextstairrow + 1, rows.begin() + last_row, TDR_sort);
}
save_mat_image(0, 1, i, rows, n_cols);
}
{
// Profile p("update");
s1.update(rows, nextstairrow, i, n_cols, 60, true);
}
}
if (!replay.empty()) {
printf("\nReplaying lazy calculations\n");
{
Profile p("Replaying lazy calculations");
for (auto ii = replay.begin(); ii != replay.end(); ii++) {
int r = ii->first.first;
int c = ii->first.second;
auto &row = ii->second;
#pragma omp parallel for shared(rows, r, c, row) schedule(dynamic, 10) default(none)
for (int j = 0; j < r; j++) {