Skip to content

Latest commit

 

History

History
717 lines (610 loc) · 18.3 KB

0203.移除链表元素.md

File metadata and controls

717 lines (610 loc) · 18.3 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

链表操作中,可以使用原链表来直接进行删除操作,也可以设置一个虚拟头结点再进行删除操作,接下来看一看哪种方式更方便。

203.移除链表元素

力扣题目链接

题意:删除链表中等于给定值 val 的所有节点。

示例 1: 输入:head = [1,2,6,3,4,5,6], val = 6 输出:[1,2,3,4,5]

示例 2: 输入:head = [], val = 1 输出:[]

示例 3: 输入:head = [7,7,7,7], val = 7 输出:[]

算法公开课

《代码随想录》算法视频公开课链表基础操作| LeetCode:203.移除链表元素,相信结合视频再看本篇题解,更有助于大家对本题的理解

思路

这里以链表 1 4 2 4 来举例,移除元素4。

203_链表删除元素1

如果使用C,C++编程语言的话,不要忘了还要从内存中删除这两个移除的节点, 清理节点内存之后如图:

203_链表删除元素2

当然如果使用java ,python的话就不用手动管理内存了。

还要说明一下,就算使用C++来做leetcode,如果移除一个节点之后,没有手动在内存中删除这个节点,leetcode依然也是可以通过的,只不过,内存使用的空间大一些而已,但建议依然要养成手动清理内存的习惯。

这种情况下的移除操作,就是让节点next指针直接指向下下一个节点就可以了,

那么因为单链表的特殊性,只能指向下一个节点,刚刚删除的是链表的中第二个,和第四个节点,那么如果删除的是头结点又该怎么办呢?

这里就涉及如下链表操作的两种方式:

  • 直接使用原来的链表来进行删除操作。
  • 设置一个虚拟头结点在进行删除操作。

来看第一种操作:直接使用原来的链表来进行移除。

203_链表删除元素3

移除头结点和移除其他节点的操作是不一样的,因为链表的其他节点都是通过前一个节点来移除当前节点,而头结点没有前一个节点。

所以头结点如何移除呢,其实只要将头结点向后移动一位就可以,这样就从链表中移除了一个头结点。

203_链表删除元素4

依然别忘将原头结点从内存中删掉。 203_链表删除元素5

这样移除了一个头结点,是不是发现,在单链表中移除头结点 和 移除其他节点的操作方式是不一样,其实在写代码的时候也会发现,需要单独写一段逻辑来处理移除头结点的情况。

那么可不可以 以一种统一的逻辑来移除 链表的节点呢。

其实可以设置一个虚拟头结点,这样原链表的所有节点就都可以按照统一的方式进行移除了。

来看看如何设置一个虚拟头。依然还是在这个链表中,移除元素1。

203_链表删除元素6

这里来给链表添加一个虚拟头结点为新的头结点,此时要移除这个旧头结点元素1。

这样是不是就可以使用和移除链表其他节点的方式统一了呢?

来看一下,如何移除元素1 呢,还是熟悉的方式,然后从内存中删除元素1。

最后呢在题目中,return 头结点的时候,别忘了 return dummyNode->next;, 这才是新的头结点

直接使用原来的链表来进行移除节点操作:

class Solution {
public:
    ListNode* removeElements(ListNode* head, int val) {
        // 删除头结点
        while (head != NULL && head->val == val) { // 注意这里不是if
            ListNode* tmp = head;
            head = head->next;
            delete tmp;
        }

        // 删除非头结点
        ListNode* cur = head;
        while (cur != NULL && cur->next!= NULL) {
            if (cur->next->val == val) {
                ListNode* tmp = cur->next;
                cur->next = cur->next->next;
                delete tmp;
            } else {
                cur = cur->next;
            }
        }
        return head;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

设置一个虚拟头结点在进行移除节点操作:

class Solution {
public:
    ListNode* removeElements(ListNode* head, int val) {
        ListNode* dummyHead = new ListNode(0); // 设置一个虚拟头结点
        dummyHead->next = head; // 将虚拟头结点指向head,这样方便后面做删除操作
        ListNode* cur = dummyHead;
        while (cur->next != NULL) {
            if(cur->next->val == val) {
                ListNode* tmp = cur->next;
                cur->next = cur->next->next;
                delete tmp;
            } else {
                cur = cur->next;
            }
        }
        head = dummyHead->next;
        delete dummyHead;
        return head;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

其他语言版本

C:

用原来的链表操作:

struct ListNode* removeElements(struct ListNode* head, int val){
    struct ListNode* temp;
    // 当头结点存在并且头结点的值等于val时
    while(head && head->val == val) {
        temp = head;
        // 将新的头结点设置为head->next并删除原来的头结点
        head = head->next;
        free(temp);
    }

    struct ListNode *cur = head;
    // 当cur存在并且cur->next存在时
    // 此解法需要判断cur存在因为cur指向head。若head本身为NULL或者原链表中元素都为val的话,cur也会为NULL
    while(cur && (temp = cur->next)) {
        // 若cur->next的值等于val
        if(temp->val == val) {
            // 将cur->next设置为cur->next->next并删除cur->next
            cur->next = temp->next;
            free(temp);
        }
        // 若cur->next不等于val,则将cur后移一位
        else
            cur = cur->next;
    }

    // 返回头结点
    return head;
}

设置一个虚拟头结点:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */


struct ListNode* removeElements(struct ListNode* head, int val){
    typedef struct ListNode ListNode;
    ListNode *shead;
    shead = (ListNode *)malloc(sizeof(ListNode));
    shead->next = head;
    ListNode *cur = shead;
    while(cur->next != NULL){
        if (cur->next->val == val){
            ListNode *tmp = cur->next;
            cur->next = cur->next->next;
            free(tmp);
        }
        else{
            cur = cur->next;
        }
    }
    head = shead->next;
    free(shead);
    return head;
}

Java:

用原来的链表操作:

/**
 * 方法1
 * 时间复杂度 O(n)
 * 空间复杂度 O(1)
 * @param head
 * @param val
 * @return
 */
public ListNode removeElements(ListNode head, int val) {
    while(head!=null && head.val==val) {
        head = head.next;
    }
    ListNode curr = head;
    while(curr!=null && curr.next !=null) {
        if(curr.next.val == val){
            curr.next = curr.next.next;
        } else {
            curr = curr.next;
        }
    }
    return head;
}

/**
 * 方法1
 * 时间复杂度 O(n)
 * 空间复杂度 O(1)
 * @param head
 * @param val
 * @return
 */
public ListNode removeElements(ListNode head, int val) {
    while (head != null && head.val == val) {
        head = head.next;
    }
    // 已经为null,提前退出
    if (head == null) {
        return head;
    }
    // 已确定当前head.val != val
    ListNode pre = head;
    ListNode cur = head.next;
    while (cur != null) {
        if (cur.val == val) {
            pre.next = cur.next;
        } else {
            pre = cur;
        }
        cur = cur.next;
    }
    return head;
}

设置一个虚拟头结点:

/**
 * 时间复杂度 O(n)
 * 空间复杂度 O(1)
 * @param head
 * @param val
 * @return
 */
public ListNode removeElements(ListNode head, int val) {
    // 设置一个虚拟的头结点
    ListNode dummy = new ListNode();
    dummy.next = head;

    ListNode cur = dummy;
    while (cur.next != null) {
        if (cur.next.val == val) {
            cur.next = cur.next.next;
        } else {
            cur = cur.next;        
        }
    }
    return dummy.next;
}

Python:

版本一虚拟头节点法
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
class Solution:
    def removeElements(self, head: Optional[ListNode], val: int) -> Optional[ListNode]:
        # 创建虚拟头部节点以简化删除过程
        dummy_head = ListNode(next = head)
        
        # 遍历列表并删除值为val的节点
        current = dummy_head
        while current.next:
            if current.next.val == val:
                current.next = current.next.next
            else:
                current = current.next
        
        return dummy_head.next

Go:

直接使用原链表

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func removeElements(head *ListNode, val int) *ListNode {

	//依旧是先定义逻辑

	//如果原链表的头节点为val的话,head=head.next,且为持续过程,防止头节点后面的节点也为Val
	//这里前置循环 并且要判定head 是否为nil,防止出错
	for head != nil && head.Val == val {//由于leetcode代码运行方式,for循环条件判断前后顺序不能修改,下面的for循环也同样如此
		head = head.Next
	}
	cur := head

	for cur != nil && cur.Next != nil {
		if cur.Next.Val == val {
			cur.Next = cur.Next.Next
		} else {
			cur = cur.Next
		}
	}

	return head

}

虚拟头节点方式:

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func removeElements(head *ListNode, val int) *ListNode {
    dummyHead := &ListNode{}
    dummyHead.Next = head
    cur := dummyHead
    for cur != nil && cur.Next != nil {
        if cur.Next.Val == val {
            cur.Next = cur.Next.Next
        } else {
            cur = cur.Next
        }
    }
    return dummyHead.Next
}

JavaScript:

/**
 * @param {ListNode} head
 * @param {number} val
 * @return {ListNode}
 */
var removeElements = function(head, val) {
    const ret = new ListNode(0, head);
    let cur = ret;
    while(cur.next) {
        if(cur.next.val === val) {
            cur.next =  cur.next.next;
            continue;
        }
        cur = cur.next;
    }
    return ret.next;
};

TypeScript:

版本一(在原链表上直接删除):

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     val: number
 *     next: ListNode | null
 *     constructor(val?: number, next?: ListNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */
function removeElements(head: ListNode | null, val: number): ListNode | null {
    // 删除头部节点
    while (head !== null && head.val === val) {
        head = head.next;
    }
    if (head === null) return head;
    let pre: ListNode = head, cur: ListNode | null = head.next;
    // 删除非头部节点
    while (cur) {
        if (cur.val === val) {
            pre.next = cur.next;
        } else {
            //此处不加类型断言时:编译器会认为pre类型为ListNode, pre.next类型为ListNode | null
            pre = pre.next as ListNode;
        }
        cur = cur.next;
    }
    return head;
};

版本二(虚拟头节点):

function removeElements(head: ListNode | null, val: number): ListNode | null {
    // 添加虚拟节点
    const data = new ListNode(0, head);
    let pre = data, cur = data.next;
    while (cur) {
        if (cur.val === val) {
            pre.next = cur.next
        } else {
            pre = cur;
        }
        cur = cur.next;
    }
    return data.next;
};

Swift:

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     public var val: Int
 *     public var next: ListNode?
 *     public init() { self.val = 0; self.next = nil; }
 *     public init(_ val: Int) { self.val = val; self.next = nil; }
 *     public init(_ val: Int, _ next: ListNode?) { self.val = val; self.next = next; }
 * }
 */
func removeElements(_ head: ListNode?, _ val: Int) -> ListNode? {
    let dummyNode = ListNode()
    dummyNode.next = head
    var currentNode = dummyNode
    while let curNext = currentNode.next {
        if curNext.val == val {
            currentNode.next = curNext.next
        } else {
            currentNode = curNext
        }
    }
    return dummyNode.next
}

PHP:

/**
 * Definition for a singly-linked list.
 * class ListNode {
 *     public $val = 0;
 *     public $next = null;
 *     function __construct($val = 0, $next = null) {
 *         $this->val = $val;
 *         $this->next = $next;
 *     }
 * }
 */

//版本一(在原链表上直接删除):
class Solution {

    /**
     * @param ListNode $head
     * @param Integer $val
     * @return ListNode
     */
    function removeElements($head, $val)
    {
  	if ($head == null) {
            return null;
        }

        $now = $head;
        while ($now->next != null) {
            if ($now->next->val == $val) {
                $now->next = $now->next->next;
            } else {
                $now = $now->next;
            }
        }
        if ($head->val == $val) {
            return $head->next;
        }
        return $head;
    }
}

//版本二(虚拟头结点方式):
class Solution {

    /**
     * @param ListNode $head
     * @param Integer $val
     * @return ListNode
     */
    function removeElements($head, $val)
    {
        $dummyHead = new ListNode(0, $head);
        $now = $dummyHead;
        while ($now->next != null){
            if ($now->next->val == $val) {
                $now->next = $now->next->next;
            } else {
                $now = $now->next;
            }
        }
        return $dummyHead->next;
    }
}

Rust:

// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
//   pub val: i32,
//   pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
//   #[inline]
//   fn new(val: i32) -> Self {
//     ListNode {
//       next: None,
//       val
//     }
//   }
// }
impl Solution {
    pub fn remove_elements(head: Option<Box<ListNode>>, val: i32) -> Option<Box<ListNode>> {
        let mut dummyHead = Box::new(ListNode::new(0));
        dummyHead.next = head;
        let mut cur = dummyHead.as_mut();
	// 使用take()替换std::mem::replace(&mut node.next, None)达到相同的效果,并且更普遍易读
        while let Some(nxt) = cur.next.take() {
            if nxt.val == val {
                cur.next = nxt.next;
            } else {
                cur.next = Some(nxt);
                cur = cur.next.as_mut().unwrap();
            }
        }
        dummyHead.next
    }
}

Scala:

/**
 * Definition for singly-linked list.
 * class ListNode(_x: Int = 0, _next: ListNode = null) {
 *   var next: ListNode = _next
 *   var x: Int = _x
 * }
 */
object Solution {
  def removeElements(head: ListNode, `val`: Int): ListNode = {
    if (head == null) return head
    var dummy = new ListNode(-1, head) // 定义虚拟头节点
    var cur = head // cur 表示当前节点
    var pre = dummy // pre 表示cur前一个节点
    while (cur != null) {
      if (cur.x == `val`) {
        // 相等,就删除那么cur的前一个节点pre执行cur的下一个
        pre.next = cur.next
      } else {
        // 不相等,pre就等于当前cur节点
        pre = cur
      }
      // 向下迭代
      cur = cur.next
    }
    // 最终返回dummy的下一个,就是链表的头
    dummy.next
  }
}

Kotlin:

/**
 * Example:
 * var li = ListNode(5)
 * var v = li.`val`
 * Definition for singly-linked list.
 * class ListNode(var `val`: Int) {
 *     var next: ListNode? = null
 * }
 */
class Solution {
    fun removeElements(head: ListNode?, `val`: Int): ListNode? {
        // 使用虚拟节点,令该节点指向head
        var dummyNode = ListNode(-1)
        dummyNode.next = head
        // 使用cur遍历链表各个节点
        var cur = dummyNode
        // 判断下个节点是否为空
        while (cur.next != null) {
            // 符合条件,移除节点
            if (cur.next.`val` == `val`) {
                cur.next = cur.next.next
            }
            // 不符合条件,遍历下一节点
            else {
                cur = cur.next
            }
        }
        // 注意:返回的不是虚拟节点
        return dummyNode.next
    }
}

C#

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     public int val;
 *     public ListNode next;
 *     public ListNode(int val=0, ListNode next=null) {
 *         this.val = val;
 *         this.next = next;
 *     }
 * }
 */
public class Solution
{
    public ListNode RemoveElements(ListNode head, int val)
    {
        ListNode dummyHead = new ListNode(0,head);
        ListNode temp = dummyHead;
        while(temp.next != null)
        {
            if(temp.next.val == val)
            {
                temp.next = temp.next.next;
            }
            else
            {
                temp = temp.next;
            }
        }
        return dummyHead.next;
    }
}