forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterval.hh
780 lines (722 loc) · 32.7 KB
/
interval.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
* Copyright (C) 2015-present ScyllaDB
*/
/*
* SPDX-License-Identifier: AGPL-3.0-or-later
*/
#pragma once
#include "utils/assert.hh"
#include <algorithm>
#include <list>
#include <vector>
#include <optional>
#include <iosfwd>
#include <compare>
#include <ranges>
#include <fmt/format.h>
template <typename Comparator, typename T>
concept IntervalComparatorFor = requires (T a, T b, Comparator& cmp) {
{ cmp(a, b) } -> std::same_as<std::strong_ordering>;
};
template <typename LessComparator, typename T>
concept IntervalLessComparatorFor = requires (T a, T b, LessComparator& cmp) {
{ cmp(a, b) } -> std::same_as<bool>;
};
inline
bool
require_ordering_and_on_equal_return(
std::strong_ordering input,
std::strong_ordering match_to_return_true,
bool return_if_equal) {
if (input == match_to_return_true) {
return true;
} else if (input == std::strong_ordering::equal) {
return return_if_equal;
} else {
return false;
}
}
template<typename T>
class interval_bound {
T _value;
bool _inclusive;
public:
interval_bound(T value, bool inclusive = true)
: _value(std::move(value))
, _inclusive(inclusive)
{ }
const T& value() const & { return _value; }
T&& value() && { return std::move(_value); }
bool is_inclusive() const { return _inclusive; }
bool operator==(const interval_bound& other) const {
return (_value == other._value) && (_inclusive == other._inclusive);
}
bool equal(const interval_bound& other, IntervalComparatorFor<T> auto&& cmp) const {
return _inclusive == other._inclusive && cmp(_value, other._value) == 0;
}
};
template<typename T>
class interval;
// An interval which can have inclusive, exclusive or open-ended bounds on each end.
// The end bound can be smaller than the start bound.
template<typename T>
class wrapping_interval {
template <typename U>
using optional = std::optional<U>;
public:
using bound = interval_bound<T>;
template <typename Transformer>
using transformed_type = typename std::remove_cv_t<std::remove_reference_t<std::invoke_result_t<Transformer, T>>>;
private:
optional<bound> _start;
optional<bound> _end;
bool _singular;
public:
wrapping_interval(optional<bound> start, optional<bound> end, bool singular = false)
: _start(std::move(start))
, _singular(singular) {
if (!_singular) {
_end = std::move(end);
}
}
wrapping_interval(T value)
: _start(bound(std::move(value), true))
, _end()
, _singular(true)
{ }
constexpr wrapping_interval() : wrapping_interval({}, {}) { }
private:
// Bound wrappers for compile-time dispatch and safety.
struct start_bound_ref { const optional<bound>& b; };
struct end_bound_ref { const optional<bound>& b; };
start_bound_ref start_bound() const { return { start() }; }
end_bound_ref end_bound() const { return { end() }; }
static bool greater_than_or_equal(end_bound_ref end, start_bound_ref start, IntervalComparatorFor<T> auto&& cmp) {
return !end.b || !start.b || require_ordering_and_on_equal_return(
cmp(end.b->value(), start.b->value()),
std::strong_ordering::greater,
end.b->is_inclusive() && start.b->is_inclusive());
}
static bool less_than(end_bound_ref end, start_bound_ref start, IntervalComparatorFor<T> auto&& cmp) {
return !greater_than_or_equal(end, start, cmp);
}
static bool less_than_or_equal(start_bound_ref first, start_bound_ref second, IntervalComparatorFor<T> auto&& cmp) {
return !first.b || (second.b && require_ordering_and_on_equal_return(
cmp(first.b->value(), second.b->value()),
std::strong_ordering::less,
first.b->is_inclusive() || !second.b->is_inclusive()));
}
static bool less_than(start_bound_ref first, start_bound_ref second, IntervalComparatorFor<T> auto&& cmp) {
return second.b && (!first.b || require_ordering_and_on_equal_return(
cmp(first.b->value(), second.b->value()),
std::strong_ordering::less,
first.b->is_inclusive() && !second.b->is_inclusive()));
}
static bool greater_than_or_equal(end_bound_ref first, end_bound_ref second, IntervalComparatorFor<T> auto&& cmp) {
return !first.b || (second.b && require_ordering_and_on_equal_return(
cmp(first.b->value(), second.b->value()),
std::strong_ordering::greater,
first.b->is_inclusive() || !second.b->is_inclusive()));
}
public:
// the point is before the interval (works only for non wrapped intervals)
// Comparator must define a total ordering on T.
bool before(const T& point, IntervalComparatorFor<T> auto&& cmp) const {
SCYLLA_ASSERT(!is_wrap_around(cmp));
if (!start()) {
return false; //open start, no points before
}
auto r = cmp(point, start()->value());
if (r < 0) {
return true;
}
if (!start()->is_inclusive() && r == 0) {
return true;
}
return false;
}
// the other interval is before this interval (works only for non wrapped intervals)
// Comparator must define a total ordering on T.
bool other_is_before(const wrapping_interval<T>& o, IntervalComparatorFor<T> auto&& cmp) const {
SCYLLA_ASSERT(!is_wrap_around(cmp));
SCYLLA_ASSERT(!o.is_wrap_around(cmp));
if (!start() || !o.end()) {
return false;
}
auto r = cmp(o.end()->value(), start()->value());
if (r < 0) {
return true;
}
if (r > 0) {
return false;
}
// o.end()->value() == start()->value(), we decide based on inclusiveness
const auto ei = o.end()->is_inclusive();
const auto si = start()->is_inclusive();
if (!ei && !si) {
return true;
}
// At least one is inclusive, check that the other isn't
if (ei != si) {
return true;
}
return false;
}
// the point is after the interval (works only for non wrapped intervals)
// Comparator must define a total ordering on T.
bool after(const T& point, IntervalComparatorFor<T> auto&& cmp) const {
SCYLLA_ASSERT(!is_wrap_around(cmp));
if (!end()) {
return false; //open end, no points after
}
auto r = cmp(end()->value(), point);
if (r < 0) {
return true;
}
if (!end()->is_inclusive() && r == 0) {
return true;
}
return false;
}
// check if two intervals overlap.
// Comparator must define a total ordering on T.
bool overlaps(const wrapping_interval& other, IntervalComparatorFor<T> auto&& cmp) const {
bool this_wraps = is_wrap_around(cmp);
bool other_wraps = other.is_wrap_around(cmp);
if (this_wraps && other_wraps) {
return true;
} else if (this_wraps) {
auto unwrapped = unwrap();
return other.overlaps(unwrapped.first, cmp) || other.overlaps(unwrapped.second, cmp);
} else if (other_wraps) {
auto unwrapped = other.unwrap();
return overlaps(unwrapped.first, cmp) || overlaps(unwrapped.second, cmp);
}
// No interval should reach this point as wrap around.
SCYLLA_ASSERT(!this_wraps);
SCYLLA_ASSERT(!other_wraps);
// if both this and other have an open start, the two intervals will overlap.
if (!start() && !other.start()) {
return true;
}
return greater_than_or_equal(end_bound(), other.start_bound(), cmp)
&& greater_than_or_equal(other.end_bound(), start_bound(), cmp);
}
static wrapping_interval make(bound start, bound end) {
return wrapping_interval({std::move(start)}, {std::move(end)});
}
static constexpr wrapping_interval make_open_ended_both_sides() {
return {{}, {}};
}
static wrapping_interval make_singular(T value) {
return {std::move(value)};
}
static wrapping_interval make_starting_with(bound b) {
return {{std::move(b)}, {}};
}
static wrapping_interval make_ending_with(bound b) {
return {{}, {std::move(b)}};
}
bool is_singular() const {
return _singular;
}
bool is_full() const {
return !_start && !_end;
}
void reverse() {
if (!_singular) {
std::swap(_start, _end);
}
}
const optional<bound>& start() const {
return _start;
}
const optional<bound>& end() const {
return _singular ? _start : _end;
}
// Range is a wrap around if end value is smaller than the start value
// or they're equal and at least one bound is not inclusive.
// Comparator must define a total ordering on T.
bool is_wrap_around(IntervalComparatorFor<T> auto&& cmp) const {
if (_end && _start) {
auto r = cmp(end()->value(), start()->value());
return r < 0
|| (r == 0 && (!start()->is_inclusive() || !end()->is_inclusive()));
} else {
return false; // open ended interval or singular interval don't wrap around
}
}
// Converts a wrap-around interval to two non-wrap-around intervals.
// The returned intervals are not overlapping and ordered.
// Call only when is_wrap_around().
std::pair<wrapping_interval, wrapping_interval> unwrap() const {
return {
{ {}, end() },
{ start(), {} }
};
}
// the point is inside the interval
// Comparator must define a total ordering on T.
bool contains(const T& point, IntervalComparatorFor<T> auto&& cmp) const {
if (is_wrap_around(cmp)) {
auto unwrapped = unwrap();
return unwrapped.first.contains(point, cmp)
|| unwrapped.second.contains(point, cmp);
} else {
return !before(point, cmp) && !after(point, cmp);
}
}
// Returns true iff all values contained by other are also contained by this.
// Comparator must define a total ordering on T.
bool contains(const wrapping_interval& other, IntervalComparatorFor<T> auto&& cmp) const {
bool this_wraps = is_wrap_around(cmp);
bool other_wraps = other.is_wrap_around(cmp);
if (this_wraps && other_wraps) {
return require_ordering_and_on_equal_return(
cmp(start()->value(), other.start()->value()),
std::strong_ordering::less,
start()->is_inclusive() || !other.start()->is_inclusive())
&& require_ordering_and_on_equal_return(
cmp(end()->value(), other.end()->value()),
std::strong_ordering::greater,
end()->is_inclusive() || !other.end()->is_inclusive());
}
if (!this_wraps && !other_wraps) {
return less_than_or_equal(start_bound(), other.start_bound(), cmp)
&& greater_than_or_equal(end_bound(), other.end_bound(), cmp);
}
if (other_wraps) { // && !this_wraps
return !start() && !end();
}
// !other_wraps && this_wraps
return (other.start() && require_ordering_and_on_equal_return(
cmp(start()->value(), other.start()->value()),
std::strong_ordering::less,
start()->is_inclusive() || !other.start()->is_inclusive()))
|| (other.end() && (require_ordering_and_on_equal_return(
cmp(end()->value(), other.end()->value()),
std::strong_ordering::greater,
end()->is_inclusive() || !other.end()->is_inclusive())));
}
// Returns intervals which cover all values covered by this interval but not covered by the other interval.
// Ranges are not overlapping and ordered.
// Comparator must define a total ordering on T.
std::vector<wrapping_interval> subtract(const wrapping_interval& other, IntervalComparatorFor<T> auto&& cmp) const {
std::vector<wrapping_interval> result;
std::list<wrapping_interval> left;
std::list<wrapping_interval> right;
if (is_wrap_around(cmp)) {
auto u = unwrap();
left.emplace_back(std::move(u.first));
left.emplace_back(std::move(u.second));
} else {
left.push_back(*this);
}
if (other.is_wrap_around(cmp)) {
auto u = other.unwrap();
right.emplace_back(std::move(u.first));
right.emplace_back(std::move(u.second));
} else {
right.push_back(other);
}
// left and right contain now non-overlapping, ordered intervals
while (!left.empty() && !right.empty()) {
auto& r1 = left.front();
auto& r2 = right.front();
if (less_than(r2.end_bound(), r1.start_bound(), cmp)) {
right.pop_front();
} else if (less_than(r1.end_bound(), r2.start_bound(), cmp)) {
result.emplace_back(std::move(r1));
left.pop_front();
} else { // Overlap
auto tmp = std::move(r1);
left.pop_front();
if (!greater_than_or_equal(r2.end_bound(), tmp.end_bound(), cmp)) {
left.push_front({bound(r2.end()->value(), !r2.end()->is_inclusive()), tmp.end()});
}
if (!less_than_or_equal(r2.start_bound(), tmp.start_bound(), cmp)) {
left.push_front({tmp.start(), bound(r2.start()->value(), !r2.start()->is_inclusive())});
}
}
}
std::ranges::copy(left, std::back_inserter(result));
// TODO: Merge adjacent intervals (optimization)
return result;
}
// split interval in two around a split_point. split_point has to be inside the interval
// split_point will belong to first interval
// Comparator must define a total ordering on T.
std::pair<wrapping_interval<T>, wrapping_interval<T>> split(const T& split_point, IntervalComparatorFor<T> auto&& cmp) const {
SCYLLA_ASSERT(contains(split_point, std::forward<decltype(cmp)>(cmp)));
wrapping_interval left(start(), bound(split_point));
wrapping_interval right(bound(split_point, false), end());
return std::make_pair(std::move(left), std::move(right));
}
// Create a sub-interval including values greater than the split_point. Returns std::nullopt if
// split_point is after the end (but not included in the interval, in case of wraparound intervals)
// Comparator must define a total ordering on T.
std::optional<wrapping_interval<T>> split_after(const T& split_point, IntervalComparatorFor<T> auto&& cmp) const {
if (contains(split_point, std::forward<decltype(cmp)>(cmp))
&& (!end() || cmp(split_point, end()->value()) != 0)) {
return wrapping_interval(bound(split_point, false), end());
} else if (end() && cmp(split_point, end()->value()) >= 0) {
// whether to return std::nullopt or the full interval is not
// well-defined for wraparound intervals; we return nullopt
// if split_point is after the end.
return std::nullopt;
} else {
return *this;
}
}
template<typename Bound, typename Transformer, typename U = transformed_type<Transformer>>
static std::optional<typename wrapping_interval<U>::bound> transform_bound(Bound&& b, Transformer&& transformer) {
if (b) {
return { { transformer(std::forward<Bound>(b).value().value()), b->is_inclusive() } };
};
return {};
}
// Transforms this interval into a new interval of a different value type
// Supplied transformer should transform value of type T (the old type) into value of type U (the new type).
template<typename Transformer, typename U = transformed_type<Transformer>>
wrapping_interval<U> transform(Transformer&& transformer) && {
return wrapping_interval<U>(transform_bound(std::move(_start), transformer), transform_bound(std::move(_end), transformer), _singular);
}
template<typename Transformer, typename U = transformed_type<Transformer>>
wrapping_interval<U> transform(Transformer&& transformer) const & {
return wrapping_interval<U>(transform_bound(_start, transformer), transform_bound(_end, transformer), _singular);
}
bool equal(const wrapping_interval& other, IntervalComparatorFor<T> auto&& cmp) const {
return bool(_start) == bool(other._start)
&& bool(_end) == bool(other._end)
&& (!_start || _start->equal(*other._start, cmp))
&& (!_end || _end->equal(*other._end, cmp))
&& _singular == other._singular;
}
bool operator==(const wrapping_interval& other) const {
return (_start == other._start) && (_end == other._end) && (_singular == other._singular);
}
private:
friend class interval<T>;
};
template<typename U>
struct fmt::formatter<wrapping_interval<U>> : fmt::formatter<string_view> {
auto format(const wrapping_interval<U>& r, fmt::format_context& ctx) const {
auto out = ctx.out();
if (r.is_singular()) {
return fmt::format_to(out, "{{{}}}", r.start()->value());
}
if (!r.start()) {
out = fmt::format_to(out, "(-inf, ");
} else {
if (r.start()->is_inclusive()) {
out = fmt::format_to(out, "[");
} else {
out = fmt::format_to(out, "(");
}
out = fmt::format_to(out, "{},", r.start()->value());
}
if (!r.end()) {
out = fmt::format_to(out, "+inf)");
} else {
out = fmt::format_to(out, "{}", r.end()->value());
if (r.end()->is_inclusive()) {
out = fmt::format_to(out, "]");
} else {
out = fmt::format_to(out, ")");
}
}
return out;
}
};
template<typename U>
std::ostream& operator<<(std::ostream& out, const wrapping_interval<U>& r) {
fmt::print(out, "{}", r);
return out;
}
// An interval which can have inclusive, exclusive or open-ended bounds on each end.
// The end bound can never be smaller than the start bound.
template<typename T>
class interval {
template <typename U>
using optional = std::optional<U>;
public:
using bound = interval_bound<T>;
template <typename Transformer>
using transformed_type = typename wrapping_interval<T>::template transformed_type<Transformer>;
private:
wrapping_interval<T> _interval;
public:
interval(T value)
: _interval(std::move(value))
{ }
constexpr interval() : interval({}, {}) { }
// Can only be called if start <= end. IDL ctor.
interval(optional<bound> start, optional<bound> end, bool singular = false)
: _interval(std::move(start), std::move(end), singular)
{ }
// Can only be called if !r.is_wrap_around().
explicit interval(wrapping_interval<T>&& r)
: _interval(std::move(r))
{ }
// Can only be called if !r.is_wrap_around().
explicit interval(const wrapping_interval<T>& r)
: _interval(r)
{ }
operator wrapping_interval<T>() const & {
return _interval;
}
operator wrapping_interval<T>() && {
return std::move(_interval);
}
// the point is before the interval.
// Comparator must define a total ordering on T.
bool before(const T& point, IntervalComparatorFor<T> auto&& cmp) const {
return _interval.before(point, std::forward<decltype(cmp)>(cmp));
}
// the other interval is before this interval.
// Comparator must define a total ordering on T.
bool other_is_before(const interval<T>& o, IntervalComparatorFor<T> auto&& cmp) const {
return _interval.other_is_before(o, std::forward<decltype(cmp)>(cmp));
}
// the point is after the interval.
// Comparator must define a total ordering on T.
bool after(const T& point, IntervalComparatorFor<T> auto&& cmp) const {
return _interval.after(point, std::forward<decltype(cmp)>(cmp));
}
// check if two intervals overlap.
// Comparator must define a total ordering on T.
bool overlaps(const interval& other, IntervalComparatorFor<T> auto&& cmp) const {
// if both this and other have an open start, the two intervals will overlap.
if (!start() && !other.start()) {
return true;
}
return wrapping_interval<T>::greater_than_or_equal(_interval.end_bound(), other._interval.start_bound(), cmp)
&& wrapping_interval<T>::greater_than_or_equal(other._interval.end_bound(), _interval.start_bound(), cmp);
}
static interval make(bound start, bound end) {
return interval({std::move(start)}, {std::move(end)});
}
static constexpr interval make_open_ended_both_sides() {
return {{}, {}};
}
static interval make_singular(T value) {
return {std::move(value)};
}
static interval make_starting_with(bound b) {
return {{std::move(b)}, {}};
}
static interval make_ending_with(bound b) {
return {{}, {std::move(b)}};
}
bool is_singular() const {
return _interval.is_singular();
}
bool is_full() const {
return _interval.is_full();
}
const optional<bound>& start() const {
return _interval.start();
}
const optional<bound>& end() const {
return _interval.end();
}
// the point is inside the interval
// Comparator must define a total ordering on T.
bool contains(const T& point, IntervalComparatorFor<T> auto&& cmp) const {
return !before(point, cmp) && !after(point, cmp);
}
// Returns true iff all values contained by other are also contained by this.
// Comparator must define a total ordering on T.
bool contains(const interval& other, IntervalComparatorFor<T> auto&& cmp) const {
return wrapping_interval<T>::less_than_or_equal(_interval.start_bound(), other._interval.start_bound(), cmp)
&& wrapping_interval<T>::greater_than_or_equal(_interval.end_bound(), other._interval.end_bound(), cmp);
}
// Returns intervals which cover all values covered by this interval but not covered by the other interval.
// Ranges are not overlapping and ordered.
// Comparator must define a total ordering on T.
std::vector<interval> subtract(const interval& other, IntervalComparatorFor<T> auto&& cmp) const {
auto subtracted = _interval.subtract(other._interval, std::forward<decltype(cmp)>(cmp));
return subtracted | std::views::transform([](auto&& r) {
return interval(std::move(r));
}) | std::ranges::to<std::vector>();
}
// split interval in two around a split_point. split_point has to be inside the interval
// split_point will belong to first interval
// Comparator must define a total ordering on T.
std::pair<interval<T>, interval<T>> split(const T& split_point, IntervalComparatorFor<T> auto&& cmp) const {
SCYLLA_ASSERT(contains(split_point, std::forward<decltype(cmp)>(cmp)));
interval left(start(), bound(split_point));
interval right(bound(split_point, false), end());
return std::make_pair(std::move(left), std::move(right));
}
// Create a sub-interval including values greater than the split_point. If split_point is after
// the end, returns std::nullopt.
std::optional<interval> split_after(const T& split_point, IntervalComparatorFor<T> auto&& cmp) const {
if (end() && cmp(split_point, end()->value()) >= 0) {
return std::nullopt;
} else if (start() && cmp(split_point, start()->value()) < 0) {
return *this;
} else {
return interval(interval_bound<T>(split_point, false), end());
}
}
// Creates a new sub-interval which is the intersection of this interval and an interval starting with "start".
// If there is no overlap, returns std::nullopt.
std::optional<interval> trim_front(std::optional<bound>&& start, IntervalComparatorFor<T> auto&& cmp) const {
return intersection(interval(std::move(start), {}), cmp);
}
// Transforms this interval into a new interval of a different value type
// Supplied transformer should transform value of type T (the old type) into value of type U (the new type).
template<typename Transformer, typename U = transformed_type<Transformer>>
interval<U> transform(Transformer&& transformer) && {
return interval<U>(std::move(_interval).transform(std::forward<Transformer>(transformer)));
}
template<typename Transformer, typename U = transformed_type<Transformer>>
interval<U> transform(Transformer&& transformer) const & {
return interval<U>(_interval.transform(std::forward<Transformer>(transformer)));
}
bool equal(const interval& other, IntervalComparatorFor<T> auto&& cmp) const {
return _interval.equal(other._interval, std::forward<decltype(cmp)>(cmp));
}
bool operator==(const interval& other) const {
return _interval == other._interval;
}
// Takes a vector of possibly overlapping intervals and returns a vector containing
// a set of non-overlapping intervals covering the same values.
template<IntervalComparatorFor<T> Comparator, typename IntervalVec>
requires requires (IntervalVec vec) {
{ vec.begin() } -> std::random_access_iterator;
{ vec.end() } -> std::random_access_iterator;
{ vec.reserve(1) };
{ vec.front() } -> std::same_as<interval&>;
}
static IntervalVec deoverlap(IntervalVec intervals, Comparator&& cmp) {
auto size = intervals.size();
if (size <= 1) {
return intervals;
}
std::sort(intervals.begin(), intervals.end(), [&](auto&& r1, auto&& r2) {
return wrapping_interval<T>::less_than(r1._interval.start_bound(), r2._interval.start_bound(), cmp);
});
IntervalVec deoverlapped_intervals;
deoverlapped_intervals.reserve(size);
auto&& current = intervals[0];
for (auto&& r : intervals | std::views::drop(1)) {
bool includes_end = wrapping_interval<T>::greater_than_or_equal(r._interval.end_bound(), current._interval.start_bound(), cmp)
&& wrapping_interval<T>::greater_than_or_equal(current._interval.end_bound(), r._interval.end_bound(), cmp);
if (includes_end) {
continue; // last.start <= r.start <= r.end <= last.end
}
bool includes_start = wrapping_interval<T>::greater_than_or_equal(current._interval.end_bound(), r._interval.start_bound(), cmp);
if (includes_start) {
current = interval(std::move(current.start()), std::move(r.end()));
} else {
deoverlapped_intervals.emplace_back(std::move(current));
current = std::move(r);
}
}
deoverlapped_intervals.emplace_back(std::move(current));
return deoverlapped_intervals;
}
private:
// These private functions optimize the case where a sequence supports the
// lower and upper bound operations more efficiently, as is the case with
// some boost containers.
struct std_ {};
struct built_in_ : std_ {};
template<typename Range, IntervalLessComparatorFor<T> LessComparator,
typename = decltype(std::declval<Range>().lower_bound(std::declval<T>(), std::declval<LessComparator>()))>
typename std::remove_reference<Range>::type::const_iterator do_lower_bound(const T& value, Range&& r, LessComparator&& cmp, built_in_) const {
return r.lower_bound(value, std::forward<LessComparator>(cmp));
}
template<typename Range, IntervalLessComparatorFor<T> LessComparator,
typename = decltype(std::declval<Range>().upper_bound(std::declval<T>(), std::declval<LessComparator>()))>
typename std::remove_reference<Range>::type::const_iterator do_upper_bound(const T& value, Range&& r, LessComparator&& cmp, built_in_) const {
return r.upper_bound(value, std::forward<LessComparator>(cmp));
}
template<typename Range, IntervalLessComparatorFor<T> LessComparator>
typename std::remove_reference<Range>::type::const_iterator do_lower_bound(const T& value, Range&& r, LessComparator&& cmp, std_) const {
return std::lower_bound(r.begin(), r.end(), value, std::forward<LessComparator>(cmp));
}
template<typename Range, IntervalLessComparatorFor<T> LessComparator>
typename std::remove_reference<Range>::type::const_iterator do_upper_bound(const T& value, Range&& r, LessComparator&& cmp, std_) const {
return std::upper_bound(r.begin(), r.end(), value, std::forward<LessComparator>(cmp));
}
public:
// Return the lower bound of the specified sequence according to these bounds.
template<typename Range, IntervalLessComparatorFor<T> LessComparator>
typename std::remove_reference<Range>::type::const_iterator lower_bound(Range&& r, LessComparator&& cmp) const {
return start()
? (start()->is_inclusive()
? do_lower_bound(start()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_())
: do_upper_bound(start()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_()))
: std::cbegin(r);
}
// Return the upper bound of the specified sequence according to these bounds.
template<typename Range, IntervalLessComparatorFor<T> LessComparator>
typename std::remove_reference<Range>::type::const_iterator upper_bound(Range&& r, LessComparator&& cmp) const {
return end()
? (end()->is_inclusive()
? do_upper_bound(end()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_())
: do_lower_bound(end()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_()))
: (is_singular()
? do_upper_bound(start()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_())
: std::cend(r));
}
// Returns a subset of the range that is within these bounds.
template<typename Range, IntervalLessComparatorFor<T> LessComparator>
std::ranges::subrange<typename std::remove_reference<Range>::type::const_iterator>
slice(Range&& range, LessComparator&& cmp) const {
return std::ranges::subrange(lower_bound(range, cmp), upper_bound(range, cmp));
}
// Returns the intersection between this interval and other.
std::optional<interval> intersection(const interval& other, IntervalComparatorFor<T> auto&& cmp) const {
auto p = std::minmax(_interval, other._interval, [&cmp] (auto&& a, auto&& b) {
return wrapping_interval<T>::less_than(a.start_bound(), b.start_bound(), cmp);
});
if (wrapping_interval<T>::greater_than_or_equal(p.first.end_bound(), p.second.start_bound(), cmp)) {
auto end = std::min(p.first.end_bound(), p.second.end_bound(), [&cmp] (auto&& a, auto&& b) {
return !wrapping_interval<T>::greater_than_or_equal(a, b, cmp);
});
return interval(p.second.start(), end.b);
}
return {};
}
friend class fmt::formatter<interval<T>>;
};
template<typename U>
struct fmt::formatter<interval<U>> : fmt::formatter<string_view> {
auto format(const interval<U>& r, fmt::format_context& ctx) const {
return fmt::format_to(ctx.out(), "{}", r._interval);
}
};
template<typename U>
std::ostream& operator<<(std::ostream& out, const interval<U>& r) {
fmt::print(out, "{}", r);
return out;
}
template<template<typename> typename T, typename U>
concept Interval = std::is_same<T<U>, wrapping_interval<U>>::value || std::is_same<T<U>, interval<U>>::value;
// Allow using interval<T> in a hash table. The hash function 31 * left +
// right is the same one used by Cassandra's AbstractBounds.hashCode().
namespace std {
template<typename T>
struct hash<wrapping_interval<T>> {
using argument_type = wrapping_interval<T>;
using result_type = decltype(std::hash<T>()(std::declval<T>()));
result_type operator()(argument_type const& s) const {
auto hash = std::hash<T>();
auto left = s.start() ? hash(s.start()->value()) : 0;
auto right = s.end() ? hash(s.end()->value()) : 0;
return 31 * left + right;
}
};
template<typename T>
struct hash<interval<T>> {
using argument_type = interval<T>;
using result_type = decltype(std::hash<T>()(std::declval<T>()));
result_type operator()(argument_type const& s) const {
return hash<wrapping_interval<T>>()(s);
}
};
}