forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenum_set.hh
299 lines (234 loc) · 7.59 KB
/
enum_set.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
* Copyright (C) 2015-present ScyllaDB
*/
/*
* SPDX-License-Identifier: AGPL-3.0-or-later
*/
#pragma once
#include "utils/assert.hh"
#include <boost/iterator/transform_iterator.hpp>
#include <seastar/core/bitset-iter.hh>
#include <algorithm>
#include <cstddef>
#include <optional>
#include <stdexcept>
#include <type_traits>
#include <limits>
/**
*
* Allows to take full advantage of compile-time information when operating
* on a set of enum values.
*
* Examples:
*
* enum class x { A, B, C };
* using my_enum = super_enum<x, x::A, x::B, x::C>;
* using my_enumset = enum_set<my_enum>;
*
* static_assert(my_enumset::frozen<x::A, x::B>::contains<x::A>(), "it should...");
*
* SCYLLA_ASSERT(my_enumset::frozen<x::A, x::B>::contains(my_enumset::prepare<x::A>()));
*
* SCYLLA_ASSERT(my_enumset::frozen<x::A, x::B>::contains(x::A));
*
*/
template<typename EnumType, EnumType... Items>
struct super_enum {
using enum_type = EnumType;
template<enum_type... values>
struct max {
static constexpr enum_type max_of(enum_type a, enum_type b) {
return a > b ? a : b;
}
template<enum_type first, enum_type second, enum_type... rest>
static constexpr enum_type get() {
return max_of(first, get<second, rest...>());
}
template<enum_type first>
static constexpr enum_type get() { return first; }
static constexpr enum_type value = get<values...>();
};
template<enum_type... values>
struct min {
static constexpr enum_type min_of(enum_type a, enum_type b) {
return a < b ? a : b;
}
template<enum_type first, enum_type second, enum_type... rest>
static constexpr enum_type get() {
return min_of(first, get<second, rest...>());
}
template<enum_type first>
static constexpr enum_type get() { return first; }
static constexpr enum_type value = get<values...>();
};
using sequence_type = typename std::underlying_type<enum_type>::type;
template <enum_type first, enum_type... rest>
struct valid_sequence {
static constexpr bool apply(sequence_type v) noexcept {
return (v == static_cast<sequence_type>(first)) || valid_sequence<rest...>::apply(v);
}
};
template <enum_type first>
struct valid_sequence<first> {
static constexpr bool apply(sequence_type v) noexcept {
return v == static_cast<sequence_type>(first);
}
};
static constexpr bool is_valid_sequence(sequence_type v) noexcept {
return valid_sequence<Items...>::apply(v);
}
template<enum_type Elem>
static constexpr sequence_type sequence_for() {
return static_cast<sequence_type>(Elem);
}
static sequence_type sequence_for(enum_type elem) {
return static_cast<sequence_type>(elem);
}
static constexpr sequence_type max_sequence = sequence_for<max<Items...>::value>();
static constexpr sequence_type min_sequence = sequence_for<min<Items...>::value>();
static_assert(min_sequence >= 0, "negative enum values unsupported");
};
class bad_enum_set_mask : public std::invalid_argument {
public:
bad_enum_set_mask() : std::invalid_argument("Bit mask contains invalid enumeration indices.") {
}
};
template<typename Enum>
class enum_set {
public:
using mask_type = size_t; // TODO: use the smallest sufficient type
using enum_type = typename Enum::enum_type;
private:
static constexpr int mask_digits = std::numeric_limits<mask_type>::digits;
using mask_iterator = seastar::bitsets::set_iterator<mask_digits>;
mask_type _mask;
constexpr enum_set(mask_type mask) : _mask(mask) {}
template<enum_type Elem>
static constexpr unsigned shift_for() {
return Enum::template sequence_for<Elem>();
}
static auto make_iterator(mask_iterator iter) {
return boost::make_transform_iterator(std::move(iter), [](typename Enum::sequence_type s) {
return enum_type(s);
});
}
public:
using iterator = std::invoke_result_t<decltype(&enum_set::make_iterator), mask_iterator>;
constexpr enum_set() : _mask(0) {}
/**
* \throws \ref bad_enum_set_mask
*/
static constexpr enum_set from_mask(mask_type mask) {
const auto bit_range = seastar::bitsets::for_each_set(std::bitset<mask_digits>(mask));
if (!std::all_of(bit_range.begin(), bit_range.end(), &Enum::is_valid_sequence)) {
throw bad_enum_set_mask();
}
return enum_set(mask);
}
static constexpr mask_type full_mask() {
return ~(std::numeric_limits<mask_type>::max() << (Enum::max_sequence + 1));
}
static constexpr enum_set full() {
return enum_set(full_mask());
}
static inline mask_type mask_for(enum_type e) {
return mask_type(1) << Enum::sequence_for(e);
}
template<enum_type Elem>
static constexpr mask_type mask_for() {
return mask_type(1) << shift_for<Elem>();
}
struct prepared {
mask_type mask;
bool operator==(const prepared& o) const {
return mask == o.mask;
}
};
static prepared prepare(enum_type e) {
return {mask_for(e)};
}
template<enum_type e>
static constexpr prepared prepare() {
return {mask_for<e>()};
}
static_assert(std::numeric_limits<mask_type>::max() >= ((size_t)1 << Enum::max_sequence), "mask type too small");
template<enum_type e>
bool contains() const {
return bool(_mask & mask_for<e>());
}
bool contains(enum_type e) const {
return bool(_mask & mask_for(e));
}
template<enum_type e>
void remove() {
_mask &= ~mask_for<e>();
}
void remove(enum_type e) {
_mask &= ~mask_for(e);
}
template<enum_type e>
void set() {
_mask |= mask_for<e>();
}
template<enum_type e>
void set_if(bool condition) {
_mask |= mask_type(condition) << shift_for<e>();
}
void set(enum_type e) {
_mask |= mask_for(e);
}
template<enum_type e>
void toggle() {
_mask ^= mask_for<e>();
}
void toggle(enum_type e) {
_mask ^= mask_for(e);
}
void add(const enum_set& other) {
_mask |= other._mask;
}
explicit operator bool() const {
return bool(_mask);
}
mask_type mask() const {
return _mask;
}
iterator begin() const {
return make_iterator(mask_iterator(_mask));
}
iterator end() const {
return make_iterator(mask_iterator(0));
}
template<enum_type... items>
struct frozen {
template<enum_type first>
static constexpr mask_type make_mask() {
return mask_for<first>();
}
static constexpr mask_type make_mask() {
return 0;
}
template<enum_type first, enum_type second, enum_type... rest>
static constexpr mask_type make_mask() {
return mask_for<first>() | make_mask<second, rest...>();
}
static constexpr mask_type mask = make_mask<items...>();
template<enum_type Elem>
static constexpr bool contains() {
return mask & mask_for<Elem>();
}
static bool contains(enum_type e) {
return mask & mask_for(e);
}
static bool contains(prepared e) {
return mask & e.mask;
}
static constexpr enum_set<Enum> unfreeze() {
return enum_set<Enum>(mask);
}
};
template<enum_type... items>
static constexpr enum_set<Enum> of() {
return frozen<items...>::unfreeze();
}
};