-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.bbl
362 lines (299 loc) · 13 KB
/
main.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
\begin{thebibliography}{10}
\bibitem{id:mgp}
About the {M}usic {G}enome {P}roject.
\newblock \url{http://www.pandora.com/about/mgp}.
\newblock Data dostępu: 2016-07-19.
\bibitem{adomavicius2005toward}
Adomavicius G., Tuzhilin A.
\newblock Toward the next generation of recommender systems: A survey of the
state-of-the-art and possible extensions.
\newblock {\em IEEE transactions on knowledge and data engineering},
17(6):734--749, 2005.
\bibitem{id:allegrofaq}
Allegro -- korzystanie z systemu rekomendacji.
\newblock \url{
http://faq.allegro.pl/artykul/27613/korzystanie-z-systemu-rekomendacji}.
\newblock Data dostępu: 2016-07-19.
\bibitem{amazonmeta}
Amazon meta.
\newblock \url{https://snap.stanford.edu/data/amazon-meta.html}.
\newblock Data dostępu: 2016-11-25.
\bibitem{effandpractstochsub}
Avron H., Kale S., Kasiviswanathan S., Sindhwani V.
\newblock Efficient and practical stochastic subgradient descent for nuclear
norm regularization.
\newblock \url{https://www.cs.cmu.edu/~yuxiangw/docs/SSGD.pdf}.
\newblock Data dostępu: 2016-09-07.
\bibitem{basu1998recommendation}
Basu C., Hirsh H., Cohen W. et~al.
\newblock Recommendation as classification: Using social and content-based
information in recommendation.
\newblock In {\em Aaai/iaai}, pages 714--720, 1998.
\bibitem{bell2007modeling}
Bell R., Koren Y., Volinsky C.
\newblock Modeling relationships at multiple scales to improve accuracy of
large recommender systems.
\newblock In {\em Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining}, pages 95--104. ACM, 2007.
\bibitem{bottou2012stochastic}
Bottou L.
\newblock Stochastic gradient descent tricks.
\newblock In {\em Neural Networks: Tricks of the Trade}, pages 421--436.
Springer, 2012.
\bibitem{id:celma2010music}
Celma O.
\newblock {\em The Long Tail in Recommender Systems}, pages 87--107.
\newblock Springer-Verlag Berlin Heidelberg, 2010.
\bibitem{id:NewRecommentationAlgoritmBasedOnSocialNetwork}
Cheng J., Liu Y., Zhang H., Wu X., Chen F.
\newblock A new recommendation algorithm based on user’s dynamic information
in complex social network.
\newblock {\em Mathematical Problems in Engineering}, 2015, 2015.
\bibitem{claypool1999combining}
Claypool M., Gokhale A., Miranda T., Murnikov P., Netes D., Sartin M.
\newblock Combining content-based and collaborative filters in an online
newspaper.
\newblock In {\em Proceedings of ACM SIGIR workshop on recommender systems},
volume~60. Citeseer, 1999.
\bibitem{id:TheYouTubeVideoRecommendationSystem}
Davidson J., Liebald B., Liu J., Nandy P., Van~Vleet T., Gargi U., Gupta S., He
Y., Lambert M., Livingston B. et~al.
\newblock The youtube video recommendation system.
\newblock In {\em Proceedings of the fourth ACM conference on Recommender
systems}, pages 293--296. ACM, 2010.
\bibitem{id:ComprehensiveSurveyOfNeighborhoodBasedRecommendationMethods}
Desrosiers C., Karypis G.
\newblock {\em {R}ecommender {S}ystems {H}andbook}, chapter {A} {C}omprehensive
{S}urvey of {N}eighborhood-based {R}ecommendation {M}ethods, pages 107--144.
\newblock Springer, New York Dordrecht Heidelberg London, 2010.
\bibitem{id:filmwebfaq}
Filmweb -- najczęściej zadawane pytania.
\newblock \url{http://www.filmweb.pl/help}.
\newblock Data dostępu: 2016-07-19.
\bibitem{mymedialite}
Gantner Z., Rendle S., Drumond L., Freudenthaler C.
\newblock Mymedialite recommender system library.
\newblock \url{http://www.mymedialite.net/}.
\newblock Data dostępu: 2016-09-05.
\bibitem{gantner2011mymedialite}
Gantner Z., Rendle S., Freudenthaler C., Schmidt-Thieme L.
\newblock Mymedialite: a free recommender system library.
\newblock In {\em Proceedings of the fifth ACM conference on Recommender
systems}, pages 305--308. ACM, 2011.
\bibitem{id:gupta2013wtf}
Gupta P., Goel A., Lin J., Sharma A., Wang D., Zadeh R.
\newblock Wtf: The who to follow service at twitter.
\newblock In {\em Proceedings of the 22nd international conference on World
Wide Web}, pages 505--514. ACM, 2013.
\bibitem{harper2016movielens}
Harper F.~M., Konstan J.~A.
\newblock The movielens datasets: History and context.
\newblock {\em ACM Transactions on Interactive Intelligent Systems (TiiS)},
5(4):19, 2016.
\bibitem{haykin1994neural}
Haykin S.
\newblock Neural networks: A comprehensive foundation: Macmillan college
publishing company.
\newblock {\em New York}, 1994.
\bibitem{hertz1993wstkep}
Hertz J.~A., Krogh A.~S., Palmer R.~G., Jankowski S.
\newblock {\em Wst{\k{e}}p do teorii oblicze{\'n} neuronowych}.
\newblock Wydawnictwa Naukowo-Techniczne, 1993.
\bibitem{id:FromTapestryToSVD}
Huttner J.
\newblock {F}rom {T}apestry to {SVD}: {A} survey of the algorithms that power
recommender system.
\newblock Master's thesis, Haverford College Department of Computer Science, 05
2009.
\bibitem{id:huynh2012modeling}
Huynh T., Hoang K.
\newblock Modeling collaborative knowledge of publishing activities for
research recommendation.
\newblock In {\em International Conference on Computational Collective
Intelligence}, pages 41--50. Springer, 2012.
\bibitem{hyndman2006another}
Hyndman R.~J., Koehler A.~B.
\newblock Another look at measures of forecast accuracy.
\newblock {\em International journal of forecasting}, 22(4):679--688, 2006.
\bibitem{id:imdbstats}
{IMDb} database statistics.
\newblock \url{http://www.imdb.com/stats}.
\newblock Data dostępu: 2016-07-19.
\bibitem{id:NextSongRecommendationWithTemporalDynamics}
Ji K., Sun R., Shu W., Li X.
\newblock Next-song recommendation with temporal dynamics.
\newblock {\em Knowledge-Based Systems}, 88:134--143, 2015.
\bibitem{aforgenet}
Kirillov A.
\newblock {AF}orge.{NET} framework.
\newblock \url{http://www.aforgenet.com/framework/}.
\newblock Data dostępu: 2016-09-05.
\bibitem{aforgenetgenetic}
Kirillov A.
\newblock {AF}orge.{NET} framework -- evolutionarylearning class.
\newblock
\url{http://www.aforgenet.com/framework/docs/html/cc8bebc5-da54-5c56-6ddf-6a93aec7b9cd.htm}.
\newblock Data dostępu: 2016-09-06.
\bibitem{koren2008factorization}
Koren Y.
\newblock Factorization meets the neighborhood: a multifaceted collaborative
filtering model.
\newblock In {\em Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining}, pages 426--434. ACM, 2008.
\bibitem{koren2010factor}
Koren Y.
\newblock Factor in the neighbors: Scalable and accurate collaborative
filtering.
\newblock {\em ACM Transactions on Knowledge Discovery from Data (TKDD)},
4(1):1, 2010.
\bibitem{id:AdvancesInCollaborativeFiltering}
Koren Y., Bell R.
\newblock {\em {R}ecommender {S}ystems {H}andbook}, chapter {A}dvances in
{C}ollaborative {F}iltering, pages 145--186.
\newblock Springer, New York Dordrecht Heidelberg London, 2010.
\bibitem{koren2009matrix}
Koren Y., Bell R., Volinsky C. et~al.
\newblock Matrix factorization techniques for recommender systems.
\newblock {\em Computer}, 42(8):30--37, 2009.
\bibitem{kwateralgorytmy}
Kwater T.
\newblock Algorytmy uczenia sieci neuronowych.
\newblock
\url{http://www.neurosoft.edu.pl/media/pdf/tkwater/sztuczna_inteligencja/2_alg_ucz_ssn.pdf}.
\newblock Data dostępu: 2016-09-06.
\bibitem{lemire2005slope}
Lemire D., Maclachlan A.
\newblock Slope one predictors for online rating-based collaborative filtering.
\newblock In {\em SDM}, volume~5, pages 1--5. SIAM, 2005.
\bibitem{leskovec2007dynamics}
Leskovec J., Adamic L.~A., Huberman B.~A.
\newblock The dynamics of viral marketing.
\newblock {\em ACM Transactions on the Web (TWEB)}, 1(1):5, 2007.
\bibitem{id:linden2003amazon}
Linden G., Smith B., York J.
\newblock Amazon. com recommendations: Item-to-item collaborative filtering.
\newblock {\em IEEE Internet computing}, 7(1):76--80, 2003.
\bibitem{id:ContentBasedRecommenderSystemsState}
Lops P., de~Gemmis M., Semeraro G.
\newblock {\em {R}ecommender {S}ystems {H}andbook}, chapter {C}ontent-based
{R}ecommender {S}ystems: {S}tate of the {A}rt and {T}rends, pages 73--100.
\newblock Springer, New York Dordrecht Heidelberg London, 2010.
\bibitem{id:MaleszkaMianowskaNguyenmethod}
Maleszka M., Mianowska B., Nguyen N.~T.
\newblock A method for collaborative recommendation using knowledge integration
tools and hierarchical structure of user profiles.
\newblock {\em Knowledge-Based Systems}, 47:1--13, 2013.
\bibitem{melville2002content}
Melville P., Mooney R.~J., Nagarajan R.
\newblock Content-boosted collaborative filtering for improved recommendations.
\newblock In {\em Aaai/iaai}, pages 187--192, 2002.
\bibitem{montana1989training}
Montana D.~J., Davis L.
\newblock Training feedforward neural networks using genetic algorithms.
\newblock In {\em IJCAI}, volume~89, pages 762--767, 1989.
\bibitem{mymedialitedatasets}
Mymedialite: Example experiments.
\newblock \url{http://www.mymedialite.net/examples/datasets.html}.
\newblock Data dostępu: 2016-07-24.
\bibitem{id:NetflixPrize}
{N}etflix {P}rize ({I} tried to resist, but...).
\newblock
\url{https://www.snellman.net/blog/archive/2006-10-15-netflix-prize.html}.
\newblock Data dostępu: 2016-07-08.
\bibitem{id:NetflixPrize2}
{N}etflix {P}rize: forum.
\newblock \url{http://www.netflixprize.com/community/viewtopic.php?id=1537}.
\newblock Data dostępu: 2016-07-08.
\bibitem{id:NetflixPrizeRankings}
{N}etflix {P}rize {R}ankings.
\newblock \url{http://www.hackingnetflix.com/2006/10/netflix_prize_r.html}.
\newblock Data dostępu: 2016-07-08.
\bibitem{id:NetflixPrizeRules}
{N}etflix {P}rize {R}ules.
\newblock \url{http://www.netflixprize.com//rules}.
\newblock Data dostępu: 2016-07-08.
\bibitem{osowski1996sieci}
Osowski S.
\newblock {\em Sieci neuronowe w uj{\k{e}}ciu algorytmicznym}.
\newblock Wydawnictwa Naukowo-Techniczne, 1996.
\bibitem{pariser2011filter}
Pariser E.
\newblock {\em The filter bubble: What the Internet is hiding from you}.
\newblock Penguin UK, 2011.
\bibitem{pena2000evolutionary}
Pena-Reyes C.~A., Sipper M.
\newblock Evolutionary computation in medicine: an overview.
\newblock {\em Artificial Intelligence in Medicine}, 19(1):1--23, 2000.
\bibitem{id:aStreamOfMovies}
Pogue D.
\newblock A {S}tream of {M}ovies, {S}ort of {F}ree.
\newblock {\em The New York Times}, 2007.
\bibitem{rendle2008online}
Rendle S., Schmidt-Thieme L.
\newblock Online-updating regularized kernel matrix factorization models for
large-scale recommender systems.
\newblock In {\em Proceedings of the 2008 ACM conference on Recommender
systems}, pages 251--258. ACM, 2008.
\bibitem{id:IntroductionToRecommenderSystemsHandbook}
Ricci F., Rokach L., Shapira B.
\newblock {\em {R}ecommender {S}ystems {H}andbook}, chapter {I}ntroduction to
{R}ecommender {S}ystems {H}andbook, pages 1--35.
\newblock Springer, New York Dordrecht Heidelberg London, 2010.
\bibitem{riedmiller1993direct}
Riedmiller M., Braun H.
\newblock A direct adaptive method for faster backpropagation learning: The
rprop algorithm.
\newblock In {\em Neural Networks, 1993., IEEE International Conference On},
pages 586--591. IEEE, 1993.
\bibitem{riedmiller1994rprop}
Riedmiller M., Rprop I.
\newblock Rprop-description and implementation details.
\newblock 1994.
\bibitem{id:ComputingRecommendationsExtremeScaleApacheFlink}
Rohrmann T.
\newblock Computing recommendations at extreme scale with apache flink.
\newblock {\em
\url{http://data-artisans.com/computing-recommendations-at-extreme-scale-with-apache-flink}},
2015.
\bibitem{id:RubensRecSysHB2010}
Rubens N., Kaplan D., Sugiyama M.
\newblock Active learning in recommender systems.
\newblock In Kantor P., Ricci F., Rokach L., Shapira B., editors, {\em
Recommender Systems Handbook}, pages 735--767. Springer, 2011.
\bibitem{salakhutdinov2011probabilistic}
Salakhutdinov R., Mnih A.
\newblock Probabilistic matrix factorization.
\newblock In {\em NIPS}, volume~20, pages 1--8, 2011.
\bibitem{sarwar2000application}
Sarwar B., Karypis G., Konstan J., Riedl J.
\newblock Application of dimensionality reduction in recommender system-a case
study.
\newblock Technical report, DTIC Document, 2000.
\bibitem{id:CollaborativeFilteringRecommenderSystems}
Schafer J., Frankowski D., Herlocker J., Sen S.
\newblock {\em {T}he {A}daptive {W}eb}, chapter {C}ollaborative filtering
recommender systems, page 291–324.
\newblock Springer Berlin / Heidelberg, 2007.
\bibitem{id:EvolutionOfRecommenderSystems}
Sharma R., Singh R.
\newblock {E}volution of {R}ecommender {S}ystems from {A}ncient {T}imes to
{M}odern {E}ra: A {S}urvey.
\newblock {\em Indian Journal of Science and Technology}, 9(20), 2016.
\bibitem{timothy1996sieci}
Timothy M.
\newblock Sieci neuronowe w praktyce.
\newblock {\em WNT, Warszawa}, 1996.
\bibitem{willmott2005advantages}
Willmott C.~J., Matsuura K.
\newblock Advantages of the mean absolute error (mae) over the root mean square
error (rmse) in assessing average model performance.
\newblock {\em Climate research}, 30(1):79--82, 2005.
\bibitem{yahoomusicwebsite}
Yahoo! music.
\newblock \url{https://www.yahoo.com/music/}.
\newblock Data dostępu: 2016-11-05.
\bibitem{id:zhang2015hybrid}
Zhang H.-R., Min F., He X., Xu Y.-Y.
\newblock A hybrid recommender system based on user-recommender interaction.
\newblock {\em Mathematical Problems in Engineering}, 2015, 2015.
\end{thebibliography}