-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathRNNForecastMultiCharts.Strategy.CS
356 lines (299 loc) · 9.8 KB
/
RNNForecastMultiCharts.Strategy.CS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
using System;
using System.Drawing;
using System.Linq;
using PowerLanguage.Function;
using System.Text;
using System.Net.Sockets;
using Newtonsoft.Json;
using System.Collections.Generic;
using System.Dynamic;
using System.Diagnostics;
namespace PowerLanguage.Strategy {
public class RNNForecastMultiCharts : SignalObject {
#region Enum Declaration
public enum Architecture {
LSTM,
GRU,
BidirectionalLSTM,
BidirectionalGRU
};
public enum Optimizer {
RMSProp,
SGD,
Adam,
Adagrad
};
public enum Loss {
MSE,
R2
};
#endregion
#region Class Definition
// Parameters to be sent to the model for training
public class TrainParameters
{
public List<string> Data{ get; set;}
public List<string> Time{get; set;}
public string FileName {get; set;}
public bool GPU {get; set;}
public bool Train {get; set;}
public int Architecture {get; set;}
public int Optimizer {get; set;}
public int Loss{get; set;}
public int Epochs {get; set;}
public int Bars {get; set ;}
public int Scale {get; set;}
public double LearningRate {get; set;}
public double Momentum {get; set;}
public double TestingPart{get; set;}
public double TestingWeight{get; set;}
}
// Parameters to be received from Trained model
public class PredictionParameters
{
public List<double> Eval {get; set;}
public List<double> Pred {get; set;}
}
// Parameters for !train and using saved model
public class SavedModelParameters
{
public string FileName {get; set;}
public bool Train {get; set;}
public int Bars {get; set;}
}
// Parameter for !train and receiving from saved model
public class SavedModelPredictionParameters
{
public List<double> Pred {get; set;}
}
#endregion
#region Variables
[Input]
public Architecture architecture {get; set;} // RNN Architecture
[Input]
public Optimizer optimizer {get; set;} // Optimizer
[Input]
public Loss loss {get; set;}
[Input]
public bool gpu {get; set;} // Allow GPU Computations ?
[Input]
public bool train {get; set;} // Train ?
public bool isTrained {get; set;}
public int prevTrain {get; set;}
public bool isForecasted {get; set;}
public bool isPlotted {get; set;}
//Train size must be greater than window_size = 60
[Input]
public int trainingSize {get; set;} // Train Size
[Input]
public int epochs {get; set;} // Epochs
[Input]
public int scale {get; set;} // Scale
[Input]
private string fileName {get; set;} // File Name to export model
[Input]
public double momentum {get; set;} // Momentum (for SGD)
[Input]
public double learningRate {get; set;} // Learning Rate
[Input]
public double testingPart {get; set;} // Percentage of Train/Test Split
[Input]
public double testingWeight {get; set;} // Percentage of Train/Test Score Weights
[Input]
public int bars {get; set;}
[Input]
public int retrainInterval {get; set;}
public TcpClient socket;
public NetworkStream stream;
#endregion
public RNNForecastMultiCharts(object _ctx):base(_ctx){
architecture = Architecture.LSTM;
loss = Loss.MSE;
optimizer = Optimizer.RMSProp;
gpu = true;
train = true;
isTrained = false;
isForecasted = false;
isPlotted = false;
trainingSize = 500;
epochs = 5;
scale = 100;
fileName = "model1";
momentum = 0.9;
learningRate = 0.001;
testingPart = 10;
testingWeight = 50;
bars = 5;
prevTrain = 0;
retrainInterval = 10;
}
protected override void Create() {
// create variable objects, function objects, order objects etc.
}
protected override void StartCalc() {
// assign inputs
}
protected override void CalcBar(){
// strategy logic
if(!Bars.LastBarOnChart)
{
return;
}
if(Bars.CurrentBar <= trainingSize)
{
Output.WriteLine("Not enough bars on chart. Waiting for new data");
return;
}
if(train)
{
int interval = Bars.CurrentBar - prevTrain;
if(Bars.Status == EBarState.Close && (!isTrained || isTrained && interval == retrainInterval))
{
Output.WriteLine(Bars.CurrentBarAbsolute().ToString());
// Establishing connection
socket = new TcpClient();
socket.Connect("localhost", 9090); // Connecting to python server on localhost
stream = socket.GetStream(); // Creating stream to read and write data
if (socket.Connected)
{
Output.WriteLine("connected!");
// Collecting close Price and Dates data
List<string> closePrice = new List<string>();
List<string> time = new List<string>();
for (int index = 0; index < trainingSize; index++)
{
closePrice.Add(Bars.Close[index].ToString() );
time.Add(Bars.Time[index].ToString());
}
closePrice.Reverse();
time.Reverse();
// Creating dynamic object to store model parameters
var jsonObject = new TrainParameters();
jsonObject.Data = closePrice;
jsonObject.Time = time;
jsonObject.FileName = fileName;
jsonObject.GPU = gpu;
jsonObject.Train = train;
jsonObject.Architecture = (int)architecture;
jsonObject.Optimizer = (int)optimizer;
jsonObject.Loss = (int)loss;
jsonObject.LearningRate = learningRate;
jsonObject.Epochs = epochs;
jsonObject.Scale = scale;
jsonObject.Momentum = momentum;
jsonObject.TestingPart = testingPart;
jsonObject.TestingWeight = testingWeight;
jsonObject.Bars = bars;
string jsonString = JsonConvert.SerializeObject(jsonObject);
Byte[] data = Encoding.UTF8.GetBytes(jsonString);
stream.Write(data, 0, data.Length);
//Output.WriteLine("Sent : " + jsonString);
Output.WriteLine("Sent!" );
isTrained = true;
prevTrain = Bars.CurrentBar;
}
else
Output.WriteLine("connection failed!");
}
if(isTrained && socket.Connected)
{
if(stream.DataAvailable)
{
//socket.ReceiveTimeout = 20000;
byte[] data = new Byte[2*256];
string response = string.Empty;
Int32 bytes = stream.Read(data, 0, data.Length);
response = Encoding.UTF8.GetString(data,0,bytes);
if(response != string.Empty)
{
Output.WriteLine("Received!");
var jsonObject = new PredictionParameters();
jsonObject = JsonConvert.DeserializeObject<PredictionParameters>(response);
// Plotting the predictions on the chart
for (int i=0; i<bars; i++)
{
double ypred = double.Parse(jsonObject.Pred[i].ToString());
IArrowObject arrowData1 = DrwArrow.Create(new ChartPoint(Bars.Time[0].AddMinutes(i), ypred), true);
arrowData1.Color = Color.Aqua;
arrowData1.Style = EArrowForms.ArrowForm6;
//Draw.Dot(this, "Prediction " + i.ToString(), true, i, ypred, Brushes.Aqua);
}
stream.Close();
socket.Close();
}
else
Output.WriteLine("No response");
}
else
Output.WriteLine("Prediction Data Not Available!");
}
else
return;
}
else
{
if(Bars.Status == EBarState.Close && !isForecasted) {
socket = new TcpClient();
socket.Connect("localhost", 9090);
stream = socket.GetStream();
if(socket.Connected)
{
Output.WriteLine("Connected!");
isForecasted = true;
var jsonObject = new SavedModelParameters();
jsonObject.FileName = fileName;
jsonObject.Train = train;
jsonObject.Bars = bars;
string jsonString = JsonConvert.SerializeObject(jsonObject);
Byte[] sentData = Encoding.UTF8.GetBytes(jsonString);
Debug.Assert(!jsonObject.Train);
stream.Write(sentData, 0, sentData.Length);
}
else
{
Output.WriteLine("Connection Failed");
}
}
if(isForecasted && socket.Connected && !isPlotted)
{
if(stream.DataAvailable)
{
//socket.ReceiveTimeout = 20000;
byte[] recievedData = new Byte[2*256];
string response = string.Empty;
Int32 bytes = stream.Read(recievedData, 0, recievedData.Length);
response = Encoding.UTF8.GetString(recievedData,0,bytes);
if(response != string.Empty)
{
var resJsonObject = new SavedModelPredictionParameters();
resJsonObject = JsonConvert.DeserializeObject<SavedModelPredictionParameters>(response);
Output.WriteLine("Received Data");
// Plotting the predictions on the chart
for (int i=0; i<bars; i++)
{
Output.WriteLine(resJsonObject.Pred[i].ToString());
double ypred = double.Parse(resJsonObject.Pred[i].ToString());
IArrowObject arrowData1 = DrwArrow.Create(new ChartPoint( Bars.Time[0].AddMinutes(i), ypred), true);
arrowData1.Color = Color.Aqua;
arrowData1.Style = EArrowForms.ArrowForm6;
//Draw.Dot(this, "Prediction " + i.ToString(), true, i, ypred, Brushes.Aqua);
}
isPlotted = true;
}
else
{
Output.WriteLine("No response");
}
}
else
{
Output.WriteLine("Prediction Data Not Available!");
}
}
// Already forecasted based on saved model
else
return;
}
}
}
}