-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathscrape.py
74 lines (57 loc) · 2.08 KB
/
scrape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# scrape the NIPS25.html file looking for authors names, titles
# and create a database of all papers. This is necessary because
# extracting the authors and titles from PDFs directly is tricky.
from HTMLParser import HTMLParser
import cPickle as pickle
class Paper:
def __init__(self):
self.paper = "" # the id of the paper
self.title = "" # the title of the paper
self.authors = "" # the author list of the paper
# create a subclass of HTMLParser and override handler methods
# this is an event-driven parser so we maintain a state etc.
# this is super hacky and tuned to the specifics of the .html
# page provided by NIPS.
class MyHTMLParser(HTMLParser):
def __init__(self):
HTMLParser.__init__(self)
self.firstPaperEncountered = False
self.curPaper = Paper()
self.allPapers = []
def handle_starttag(self, tag, attrs):
if not tag == 'a': return
# attrs is a list of (key, value) pairs
for k,v in attrs:
if k == 'name':
print "New paper: " + v
if self.firstPaperEncountered:
# push current paper to stack
self.allPapers.append(self.curPaper)
# this signals new paper being read
self.curPaper = Paper() # start a new paper
self.curPaper.paper = v[1:] # for some reason first character is P, then follows the 4-digit ID
self.firstPaperEncountered = True
def handle_endtag(self, tag):
if not self.firstPaperEncountered: return
def handle_data(self, data):
if not self.firstPaperEncountered: return
# there are many garbage data newlines, get rid of it
s = data.strip()
if len(s) == 0: return
# title is first data encountered, then authors
if self.curPaper.title == "":
self.curPaper.title = data
print 'title ' + data
return
if self.curPaper.authors == "":
self.curPaper.authors = data
print 'authors ' + data
return
parser = MyHTMLParser()
f = open('nips25offline/nips25.html').read()
parser.feed(f)
outdict = {}
for p in parser.allPapers:
outdict[p.paper] = (p.title, p.authors)
# dump a dictionary indexed by paper id that points to (title, authors) tuple
pickle.dump(outdict, open("papers.p", "wb"))