-
Notifications
You must be signed in to change notification settings - Fork 41
/
train_val.py
executable file
·369 lines (308 loc) · 12.4 KB
/
train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# --------------------------------------------------------
# CGNL Network
# Copyright (c) 2018 Kaiyu Yue
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import os
import argparse
import time
import shutil
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
from torchvision import transforms
from termcolor import cprint
from lib import dataloader
from model import resnet
# torch version
cprint('=> Torch Vresion: ' + torch.__version__, 'green')
# args
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--debug', '-d', dest='debug', action='store_true',
help='enable debug mode')
parser.add_argument('--warmup', '-w', dest='warmup', action='store_true',
help='using warmup strategy')
parser.add_argument('--print-freq', '-p', default=1, type=int, metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--nl-nums', default=0, type=int, metavar='N',
help='number of the NL | CGNL block (default: 0)')
parser.add_argument('--nl-type', default=None, type=str,
help='choose NL | CGNL | CGNLx block to add (default: None)')
parser.add_argument('--arch', default='50', type=str,
help='the depth of resnet (default: 50)')
parser.add_argument('--valid', '-v', dest='valid',
action='store_true', help='just run validation')
parser.add_argument('--checkpoints', default='', type=str,
help='the dir of checkpoints')
parser.add_argument('--dataset', default='cub', type=str,
help='cub | imagenet (default: cub)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float, metavar='LR',
help='initial learning rate (default: 0.01)')
best_prec1 = 0
best_prec5 = 0
def main():
global args
global best_prec1, best_prec5
args = parser.parse_args()
# simple args
debug = args.debug
if debug: cprint('=> WARN: Debug Mode', 'yellow')
dataset = args.dataset
num_classes = 200 if dataset == 'cub' else 1000
base_size = 512 if dataset == 'cub' else 256
pool_size = 14 if base_size == 512 else 7
workers = 0 if debug else 8
batch_size = 2 if debug else 256
if base_size == 512 and \
args.arch == '152':
batch_size = 128
drop_ratio = 0.1
lr_drop_epoch_list = [31, 61, 81]
epochs = 100
eval_freq = 1
gpu_ids = [0] if debug else [0,1,2,3,4,5,6,7]
crop_size = 224 if base_size == 256 else 448
# args for the nl and cgnl block
arch = args.arch
nl_type = args.nl_type # 'cgnl' | 'cgnlx' | 'nl'
nl_nums = args.nl_nums # 1: stage res4
# warmup setting
WARMUP_LRS = [args.lr * (drop_ratio**len(lr_drop_epoch_list)), args.lr]
WARMUP_EPOCHS = 10
# data loader
if dataset == 'cub':
data_root = 'data/cub'
imgs_fold = os.path.join(data_root, 'images')
train_ann_file = os.path.join(data_root, 'cub_train.list')
valid_ann_file = os.path.join(data_root, 'cub_val.list')
elif dataset == 'imagenet':
data_root = 'data/imagenet'
imgs_fold = os.path.join(data_root)
train_ann_file = os.path.join(data_root, 'imagenet_train.list')
valid_ann_file = os.path.join(data_root, 'imagenet_val.list')
else:
raise NameError("WARN: The dataset '{}' is not supported yet.")
train_dataset = dataloader.ImgLoader(
root = imgs_fold,
ann_file = train_ann_file,
transform = transforms.Compose([
transforms.RandomResizedCrop(
size=crop_size, scale=(0.08, 1.25)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]))
val_dataset = dataloader.ImgLoader(
root = imgs_fold,
ann_file = valid_ann_file,
transform = transforms.Compose([
transforms.Resize(base_size),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]))
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size = batch_size,
shuffle = True,
num_workers = workers,
pin_memory = True)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size = batch_size,
shuffle = False,
num_workers = workers,
pin_memory = True)
# build model
model = resnet.model_hub(arch,
pretrained=True,
nl_type=nl_type,
nl_nums=nl_nums,
pool_size=pool_size)
# change the fc layer
model._modules['fc'] = torch.nn.Linear(in_features=2048,
out_features=num_classes)
torch.nn.init.kaiming_normal_(model._modules['fc'].weight,
mode='fan_out', nonlinearity='relu')
print(model)
# parallel
model = torch.nn.DataParallel(model, device_ids=gpu_ids).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
# optimizer
optimizer = torch.optim.SGD(
model.parameters(),
args.lr,
momentum=0.9,
weight_decay=1e-4)
# cudnn
cudnn.benchmark = True
# warmup
if args.warmup:
epochs += WARMUP_EPOCHS
lr_drop_epoch_list = list(
np.array(lr_drop_epoch_list) + WARMUP_EPOCHS)
cprint('=> WARN: warmup is used in the first {} epochs'.format(
WARMUP_EPOCHS), 'yellow')
# valid
if args.valid:
cprint('=> WARN: Validation Mode', 'yellow')
print('start validation ...')
checkpoint_fold = args.checkpoints
checkpoint_best = os.path.join(checkpoint_fold, 'model_best.pth.tar')
print('=> loading state_dict from {}'.format(checkpoint_best))
model.load_state_dict(
torch.load(checkpoint_best)['state_dict'])
prec1, prec5 = validate(val_loader, model, criterion)
print(' * Final Accuracy: Prec@1 {:.3f}, Prec@5 {:.3f}'.format(prec1, prec5))
exit(0)
# train
print('start training ...')
for epoch in range(0, epochs):
current_lr = adjust_learning_rate(optimizer, drop_ratio, epoch, lr_drop_epoch_list,
WARMUP_EPOCHS, WARMUP_LRS)
# train one epoch
train(train_loader, model, criterion, optimizer, epoch, epochs, current_lr)
if nl_nums > 0:
checkpoint_name = '{}-r-{}-w-{}{}-block.pth.tar'.format(dataset, arch, nl_nums, nl_type)
else:
checkpoint_name = '{}-r-{}-base.pth.tar'.format(dataset, arch)
if (epoch + 1) % eval_freq == 0:
prec1, prec5 = validate(val_loader, model, criterion)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
best_prec5 = max(prec5, best_prec5)
print(' * Best accuracy: Prec@1 {:.3f}, Prec@5 {:.3f}'.format(best_prec1, best_prec5))
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best, filename=checkpoint_name)
def train(train_loader, model, criterion, optimizer, epoch, epochs, current_lr):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0:3d}/{1:3d}][{2:3d}/{3:3d}]\t'
'LR: {lr:.7f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, epochs, i, len(train_loader),
lr=current_lr, batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg
def adjust_learning_rate(optimizer, drop_ratio, epoch, lr_drop_epoch_list,
WARMUP_EPOCHS, WARMUP_LRS):
if args.warmup and epoch < WARMUP_EPOCHS:
# achieve the warmup lr
lrs = np.linspace(WARMUP_LRS[0], WARMUP_LRS[1], num=WARMUP_EPOCHS)
cprint('=> warmup lrs {}'.format(lrs), 'green')
for param_group in optimizer.param_groups:
param_group['lr'] = lrs[epoch]
current_lr = lrs[epoch]
else:
decay = drop_ratio if epoch in lr_drop_epoch_list else 1.0
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr * decay
args.lr *= decay
current_lr = args.lr
return current_lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k
"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()