-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_lstm_module.py
403 lines (340 loc) · 16.6 KB
/
train_lstm_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import argparse
import os,sys,shutil
import time
# from sampler import ImbalancedDatasetSampler
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.nn.functional as F
#import transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
import math
from lstm_module import lstm_processing
from sample import MsCelebDataset
import scipy.io as sio
import numpy as np
import pdb
os.environ['CUDA_VISIBLE_DEVICES'] = '7'
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch CelebA Training')
parser.add_argument('--img_dir', metavar='DIR', default='/media/sdb/xxzeng/MS-1m-subset-cleanning-by-demeng-size-178_218/MS-1m-subset-cleanning-by-demeng-size-178_218/', help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='our_lstm_attention', choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: alexnet)')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=12, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('-b_t', '--batch-size_t', default=4, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.002, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=1, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', default='../../Data/Model/resnet34_ferplus.pkl', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--model_dir','-m', default='./engagement_regression', type=str)
parser.add_argument('--end2end', default=True,\
help='if true, using end2end with dream block, else, using naive architecture')
best_prec1 = 1
def main():
global args, best_prec1
args = parser.parse_args()
print('end2end?:', args.end2end)
train_list_file = 'openpose_jianfei_split_train.txt'
train_dataset = MsCelebDataset(train_list_file)
train_loader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
# sampler=ImbalancedDatasetSampler(train_dataset),
batch_size=args.batch_size,
num_workers=args.workers, pin_memory=True)
val_list_file = 'openpose_jianfei_split_validation.txt'
val_dataset = MsCelebDataset(val_list_file)
val_loader = torch.utils.data.DataLoader(
val_dataset,
shuffle=True,
# sampler=ImbalancedDatasetSampler(val_dataset),
batch_size=args.batch_size_t,
num_workers=args.workers, pin_memory=True)
#assert(train_dataset.max_label == val_dataset.max_label)
# prepare model
model = None
assert(args.arch in ['our_lstm_attention','resnet18','resnet34','resnet101'])
if args.arch == 'our_lstm_attention':
#model = Res()
model = lstm_processing(feature_num=14, hidden_dim=512)
print("we use our lstm attention network!")
# model = resnet18(pretrained=False, nverts=nverts_var,faces=faces_var,shapeMU=shapeMU_var,shapePC=shapePC_var,num_classes=class_num, end2end=args.end2end)
if args.arch == 'resnet34':
model = resnet34(end2end=args.end2end)
if args.arch == 'resnet101':
pass
# model = resnet101(pretrained=False,nverts=nverts_var,faces=faces_var,shapeMU=shapeMU_var,shapePC=shapePC_var, num_classes=class_num, end2end=args.end2end)
# for param in model.parameters():
# param.requires_grad = False
# for name, p in model.named_parameters():
# if not ( 'fc' in name or 'alpha' in name or 'beta' in name):
# p.requires_grad = False
# else:
# print 'updating layer :',name
# print p.requires_grad
# for param_flow in model.module.resnet18_optical_flow.parameters():
# param_flow.requires_grad =True
model = torch.nn.DataParallel(model).cuda()
#pdb.set_trace()
#model.module.theta.requires_grad = True
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
criterion1 = nn.MSELoss().cuda()
criterion2 = kw_rank_loss().cuda()
#criterion=Cross_Entropy_Sample_Weight.CrossEntropyLoss_weight().cuda()
#optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), args.lr,
# momentum=args.momentum,
# weight_decay=args.weight_decay)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# optionally resume from a checkpoint
cudnn.benchmark = True
print ('args.evaluate',args.evaluate)
if args.evaluate:
validate(val_loader, model, criterion1, criterion, criterion2)
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, criterion1, criterion,optimizer, epoch)
# evaluate on validation set
prec1 = validate(val_loader, model, criterion1, criterion)
# remember best prec@1 and save checkpoint
is_best = prec1 < best_prec1
best_prec1 = min(prec1.cuda()[0], best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best[0])
def train(train_loader, model, criterion1, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
cla_losses = AverageMeter()
yaw_losses = AverageMeter()
losses = AverageMeter()
classification_losses = AverageMeter()
regression_losses = AverageMeter()
rank_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (feature, label,classification_label) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = feature.float()
target = label.float()
target = target.cuda(async=True)
target_class = classification_label
target_class = target_class.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target).unsqueeze(1)
target_class_var = torch.autograd.Variable(target_class)
# compute output
#pdb.set_trace()
class_score, pred_score = model(input_var)
#pdb.set_trace()
regression_loss = criterion1(pred_score, target_var)
classification_loss = criterion(class_score, target_class_var)
# pdb.set_trace()
#rank_loss = criterion2(feature_results, target_var)
loss = regression_loss + 0*classification_loss
prec1 = accuracy(class_score.data, target_class_var, topk=(1,))
# pdb.set_trace()
regression_losses.update(regression_loss.item(), input.size(0))
classification_losses.update(classification_loss.item(), input.size(0))
#rank_losses.update(rank_loss, input.size(0))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val} ({batch_time.avg})\t'
'Data {data_time.val} ({data_time.avg})\t'
'regLoss {regression_loss.val} ({regression_loss.avg})\t'
'claLoss {classification_loss.val} ({classification_loss.avg})\t'
'Prec@1 {top1.val} ({top1.avg})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, regression_loss=regression_losses, classification_loss=classification_losses,top1=top1))
def validate(val_loader, model, criterion1, criterion):
batch_time = AverageMeter()
cla_losses = AverageMeter()
yaw_losses = AverageMeter()
losses = AverageMeter()
classification_losses = AverageMeter()
regression_losses = AverageMeter()
rank_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (feature, label, classification_label) in enumerate(val_loader):
# target = target.cuda(async=True)
# input_var = torch.autograd.Variable(input, volatile=True)
# target_var = torch.autograd.Variable(target, volatile=True)
# compute output
input = feature.float()
target = label.float()
target = target.cuda(async=True)
target_class = classification_label
target_class = target_class.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target).unsqueeze(1)
target_class_var = torch.autograd.Variable(target_class)
#gr_em_label = gr_em_label.cuda(async=True)
#gr_em_label_var = torch.autograd.Variable(gr_em_label)
class_score, pred_score = model(input_var)
#pdb.set_trace()
regression_loss = criterion1(pred_score, target_var)
classification_loss = criterion(class_score, target_class_var)
# pdb.set_trace()
#rank_loss = criterion2(feature_results, target_var)
loss = regression_loss + 0*classification_loss
# loss = regression_loss
# loss = classification_loss*(1/math.exp(-regression_loss))
# measure accuracy and record loss
prec1 = accuracy(class_score.data, target_class_var, topk=(1,))
regression_losses.update(regression_loss.data[0], input.size(0))
classification_losses.update(classification_loss.item(), input.size(0))
#rank_losses.update(rank_loss, input.size(0))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val} ({batch_time.avg})\t'
'regLoss {regression_loss.val} ({regression_loss.avg})\t'
'claLoss {classification_loss.val} ({classification_loss.avg})\t'
'Prec@1 {top1.val} ({top1.avg})\t'
.format(
i, len(val_loader), batch_time=batch_time, regression_loss=regression_losses, classification_loss = classification_losses, top1=top1))
print(' * Prec@1 {regression_loss.avg} '
.format(regression_loss=regression_losses))
return regression_losses.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
full_filename = os.path.join(args.model_dir, filename)
full_bestname = os.path.join(args.model_dir, 'model_best.pth.tar')
torch.save(state, full_filename)
epoch_num = state['epoch']
if epoch_num%1==0 and epoch_num>=0:
torch.save(state, full_filename.replace('checkpoint','checkpoint_'+str(epoch_num)))
if is_best:
shutil.copyfile(full_filename, full_bestname)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
#lr = args.lr * (0.1 ** (epoch // 30))
if epoch in [int(args.epochs*0.3), int(args.epochs*0.5), int(args.epochs*0.8)]:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class kw_rank_loss(nn.Module):
def __init__(self):
super(kw_rank_loss, self).__init__()
def forward(self, feature_results, target_var):
engagement_level_1 = np.zeros((1, feature_results.shape[1]))
engagement_level_2 = np.zeros((1, feature_results.shape[1]))
engagement_level_3 = np.zeros((1, feature_results.shape[1]))
engagement_level_4 = np.zeros((1, feature_results.shape[1]))
level_1_num = level_2_num = level_3_num = level_4_num = 1
#pdb.set_trace()
size = feature_results.shape[0]
feature_results = feature_results.cpu().data.numpy()
margin = 0.75
#pdb.set_trace()
for i in range(size):
if target_var[i] <= 0.1:
engagement_level_1 += feature_results[i]
level_1_num += 1
if 0.3 <target_var[i] <= 0.4:
engagement_level_2 += feature_results[i]
level_2_num += 1
if 0.6 <target_var[i] <= 0.7:
engagement_level_3 += feature_results[i]
level_3_num += 1
if 0.8 <target_var[i] <= 1:
engagement_level_4 += feature_results[i]
level_4_num += 1
#pdb.set_trace()
engagement_level_1 = engagement_level_1/level_1_num
engagement_level_2 = engagement_level_2/level_2_num
engagement_level_3 = engagement_level_3/level_3_num
engagement_level_4 = engagement_level_4/level_4_num
#pdb.set_trace()
dist_1_2 = np.linalg.norm(engagement_level_1 - engagement_level_2)
dist_1_3 = np.linalg.norm(engagement_level_1 - engagement_level_3)
dist_1_4 = np.linalg.norm(engagement_level_1 - engagement_level_4)
dist_2_3 = np.linalg.norm(engagement_level_2 - engagement_level_3)
dist_2_4 = np.linalg.norm(engagement_level_2 - engagement_level_4)
dist_3_4 = np.linalg.norm(engagement_level_3 - engagement_level_4)
#pdb.set_trace()
loss = max(0.0,(dist_1_2 - dist_1_3 + margin)) + max(0.0,(dist_1_2 - dist_1_4 +2*margin)) + \
max(0.0,(dist_2_3 - dist_2_4 + margin)) + max(0.0,(dist_2_3 - dist_1_4 +2*margin)) + \
max(0.0,(dist_3_4 - dist_2_4 + margin)) + max(0.0,(dist_3_4 - dist_1_4 +2*margin))
return loss
if __name__ == '__main__':
main()