-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataProcessing2.py
49 lines (44 loc) · 1.53 KB
/
DataProcessing2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
# get data
data = pd.read_csv('games.csv')
#data = data[::-1] #reverses the order of the dataframe
data.columns = pd.MultiIndex.from_tuples([col, ''] for col in data.columns)
data = data.drop(columns=['GAME_ID','HOME_TEAM_ID','VISITOR_TEAM_ID','GAME_STATUS_TEXT'])
data = data[data['SEASON']==2021]
data = data[(data['TEAM_ID_home']==1610612737) | (data['TEAM_ID_away']==1610612737)]
cdata = data[::-1] #corrected_data
#print(cdata)
rounds = 1
total_points = 0
avg_points = 0
total_rbds = 0
avg_rbds = 0
total_asts = 0
avg_asts = 0
for index, row in cdata.iterrows():
home_team = row.loc['TEAM_ID_home'].values[0]
#print(row['PTS_home'].values[0])
if(home_team==1610612737):
total_points+=row['PTS_home'].values[0]
avg_points=(total_points)/rounds
total_rbds+=row['REB_home'].values[0]
avg_rbds=(total_rbds)/rounds
total_asts+=row['AST_home'].values[0]
avg_asts=(total_asts)/rounds
else:
total_points+=row['PTS_away'].values[0]
avg_points=(total_points)/rounds
total_rbds+=row['REB_away'].values[0]
avg_rbds=(total_rbds)/rounds
total_asts+=row['AST_away'].values[0]
avg_asts=(total_asts)/rounds
print("average points:" + str(avg_points))
print("average rebounds:" + str(avg_rbds))
print("average assists: " + str(avg_asts))
rounds+=1