-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.R
164 lines (134 loc) · 5.97 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
library(shiny)
library(tidyverse)
# created in load_norms_tables.R
norms_tables <- readRDS("cdi_benchmarks/norms_tables.rds")
required_columns <- c('id', 'form', 'sex', 'age', 'sumscore')
valid_wg_ages = 12:18
valid_ws_ages = 16:30
ui <- fluidPage(
titlePanel("CDI Percentile Score Calculator"),
sidebarLayout(
sidebarPanel(
h3("Single Child Lookup"),
p(HTML("To get norms-based percentile for a single child, choose the age (in months), sex (if sex-based norms desired), and form type.")),
selectInput("form_type", "Form Type",
choices = c("eng_ws_prod", "eng_wg_prod", "eng_wg_comp")),
numericInput("child_age", "Age of Child", value = 20, min = 12, max = 30),
selectInput("child_sex", "Sex of Child",
choices = c("Male" = "m", "Female" = "f", "All" = "both")),
numericInput("child_score", "CDI Summary Score", value = 151, min = 0),
actionButton("calculate", "Calculate Percentile"),
hr(),
verbatimTextOutput("percentile_result"),
verbatimTextOutput("error_message")
),
mainPanel(
h3("Bulk Lookup"),
p(HTML("This tool is meant to help researchers look up percentiles for English CDI:WS / CDI:WG scores based on the 2022 American English norms. (It is only valid for the forms' intended age ranges, and for children from the United States.)")),
p(HTML("Upload a CSV with 1 row per child. Columns must include: age, sex, form, and sumscore. Allowable values:")),
p(HTML("<b>age</b>: (in months) valid range for Words & Gestures form: 8-18; valid range for Words & Sentences form: 16-30.")),
p(HTML("<b>sex</b>: 'm' (male), 'f' (female), or 'both' (for non-sex-specific norms)")),
p(HTML("<b>form</b>: must be one of ['eng_ws_prod','eng_wg_prod','eng_wg_comp'] (eng=English; prod=production; comp=comprehension")),
p(HTML("<b>sumscore</b>: total words known (produced / understood; see <b>form</b>); should be 0-396 for WG forms, and 0-680 for WS")),
fileInput("file_input", "Upload CSV File",
accept = c(".csv")),
tableOutput("uploaded_data"),
uiOutput("download_button")
)
)
)
# Core function that looks up the percentile for a given table, the child's age, and the child's score
get_percentile <- function(lookup_table_mat, child_age, child_score) {
new_row = matrix(c(1, rep(0, ncol(lookup_table_mat) - 1)), #1, then 0s
1,
ncol(lookup_table_mat)) #length of real table
colnames(new_row) <- colnames(lookup_table_mat)
lookup_table_mat <- rbind(new_row, lookup_table_mat)
lookup2 <- lookup_table_mat[, -1]
rownames(lookup2) <- lookup_table_mat[, 1]
if (child_age < min(as.numeric(colnames(lookup2))) |
child_age > max(as.numeric(colnames(lookup2)))) {
return(NA)
}
age_values <- lookup2[, as.character(child_age)]
if (child_score > max(age_values)) {
return(99)
} else if (child_score < 0) {
return(1)
}
smaller <- max(age_values[age_values <= child_score])
larger <- min(age_values[age_values >= child_score])
increment = (larger - smaller) / 5
interp_scores <- seq(smaller, larger, increment)
step = which(interp_scores == max(interp_scores[interp_scores <= child_score])) - 1
max(as.numeric(names(which(age_values == smaller)))) + step
}
get_percentile_for_child <- function(form_type, child_age,
child_score,
child_sex = NA,
percentile_matrix = norms_tables) {
if (is.na(child_sex)) {
child_sex = "both"
}
percentile_key = paste0(form_type, "_", child_sex)
target_file = paste0(percentile_key, ".csv")
if (!target_file %in% names(percentile_matrix)) {
message(paste("Missing file for ", target_file))
return(NA)
}
target_matrix <- percentile_matrix[[target_file]]
get_percentile(target_matrix, child_age, child_score)
}
server <- function(input, output, session) {
uploaded_data <- reactive({
req(input$file_input)
inFile <- input$file_input
if(is.null(inFile)) return(NULL)
raw_dat <- read.csv(inFile$datapath, header = T, sep=',')
validate(
need("id" %in% names(raw_dat), "Need 'id' column in uploaded CSV."),
need("form" %in% names(raw_dat), "Error: Need 'AWC' or 'AWC_COUNT' in uploaded CSV."),
need("sex" %in% names(raw_dat) , "Error: Need 'CTC' or 'CT_COUNT' in uploaded CSV."),
need("age" %in% names(raw_dat) & is.numeric(raw_dat$age), "Error: Need 'age' (numeric age in months in range of 12-30) in uploaded CSV."),
need("sumscore" %in% names(raw_dat) & is.numeric(raw_dat$sumscore), "Error: Need 'sumscore' (numeric, total words known on CDI) in uploaded CSV.")
)
dat <- raw_dat %>% select(all_of(required_columns))
})
output$percentile_result <- renderPrint({
input$calculate
isolate({
percentile <- get_percentile_for_child(input$form_type, input$child_age, input$child_score, input$child_sex)
if (is.na(percentile)) {
return("Error: Child is too young or too old for this measure.")
} else {
paste("Percentile score:", percentile)
}
})
})
processed_data <- reactive({
req(uploaded_data())
data <- uploaded_data()
data$percentile <- mapply(get_percentile_for_child,
data$form,
data$age,
data$sumscore,
data$sex)
data
})
output$uploaded_data <- renderTable({
req(processed_data())
processed_data()
})
output$download_button <- renderUI({
req(input$file_input, processed_data())
downloadButton("download_data", "Download Data", class = "btn-xs")
})
output$download_data <- downloadHandler(
filename = function() "processed_data.csv",
content = function(fname) {
write.csv(processed_data(),
fname, row.names = FALSE)
}
)
}
shinyApp(ui = ui, server = server)