forked from edenartlab/sd-lora-trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
node.py
148 lines (128 loc) · 5.94 KB
/
node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import tarfile
import json
import time
import torch
import numpy as np
from PIL import Image
from main import train
from trainer.config import TrainingConfig, model_paths
from trainer.utils.io import clean_filename
import folder_paths
import comfy.utils
class Eden_LoRa_trainer:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"training_images_folder_path": ("STRING", {"default": "."}),
"mode": (["style", "face", "object"], {"default": "style"}),
"lora_name": ("STRING", {"default": "Eden_Token_LoRa"}),
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
"training_resolution": ("INT", {"default": 512, "min": 256, "max": 1024}),
"train_batch_size": ("INT", {"default": 4, "min": 1, "max": 8}),
"max_train_steps": ("INT", {"default": 300, "min": 10, "max": 10000}),
"ti_lr": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 0.005, "step": 0.0001}),
"unet_lr": ("FLOAT", {"default": 0.0005, "min": 0.0, "max": 0.005, "step": 0.0001}),
"lora_rank": ("INT", {"default": 16, "min": 1, "max": 64}),
"disable_ti": ("BOOLEAN", {"default": False}),
"n_tokens": ("INT", {"default": 3, "min": 1, "max": 5}),
"save_checkpoint_every_n_steps": ("INT", {"default": 200, "min": 10, "max": 10000}),
"n_sample_imgs": ("INT", {"default": 4, "min": 2, "max": 10}),
"sample_imgs_lora_scale": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.25}),
"plot_training_graphs_on_disk": ("BOOLEAN", {"default": False}),
"seed": ("INT", {"default": 0, "min": 0, "max": 100000}),
}
}
CATEGORY = "Eden 🌱"
RETURN_TYPES = ("IMAGE", "STRING", "STRING", "STRING")
RETURN_NAMES = ("sample_images", "lora_path", "embedding_path", "final_msg")
FUNCTION = "train_lora"
def train_lora(self,
training_images_folder_path,
ckpt_name,
lora_name,
mode,
training_resolution,
train_batch_size,
max_train_steps ,
ti_lr,
unet_lr,
lora_rank,
disable_ti,
n_tokens,
plot_training_graphs_on_disk,
save_checkpoint_every_n_steps,
n_sample_imgs,
sample_imgs_lora_scale,
seed,
):
print("Starting new training job...")
# Overwrite hardcoded paths to point to comfyUI folders:
model_paths.set_path("CLIP", os.path.join(folder_paths.models_dir, "clipseg"))
model_paths.set_path("FLORENCE", os.path.join(folder_paths.models_dir, "LLM"))
model_paths.set_path("BLIP", os.path.join(folder_paths.models_dir, "blip"))
model_paths.set_path("SR", os.path.join(folder_paths.models_dir, "upscale_models"))
model_paths.set_path("SD", os.path.join(folder_paths.models_dir, "checkpoints"))
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
config = TrainingConfig(
name=lora_name,
output_dir="output",
lora_training_urls=training_images_folder_path,
concept_mode=mode,
ckpt_path=ckpt_path,
seed=seed,
resolution=training_resolution,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
checkpointing_steps=save_checkpoint_every_n_steps,
n_sample_imgs=(n_sample_imgs//2) * 2,
sample_imgs_lora_scale=sample_imgs_lora_scale,
ti_lr=ti_lr,
unet_lr=unet_lr,
lora_rank=lora_rank,
use_dora=False,
caption_model="blip",
disable_ti=disable_ti,
n_tokens=n_tokens,
verbose=True,
debug=plot_training_graphs_on_disk,
)
pbar = comfy.utils.ProgressBar(100)
with torch.inference_mode(False):
train_generator = train(config=config)
while True:
try:
progress_f = next(train_generator)
pbar.update_absolute(progress_f * 100)
except StopIteration as e:
config, output_save_dir = e.value # Capture the return value
break
attributes = {}
attributes['grid_prompts'] = config.training_attributes["validation_prompts"]
attributes['job_time_seconds'] = config.job_time
print(f"LORA training node finished in {config.job_time:.1f} seconds")
print("---------- Made with love by Eden.art 🌱 ----------")
# safetensors paths:
paths = [os.path.join(output_save_dir, f) for f in os.listdir(output_save_dir) if f.endswith(".safetensors")]
# find the index of the path containing "_embeddings.safetensors":
for i, path in enumerate(paths):
if "_embeddings.safetensors" in path:
embedding_path = path
else:
lora_path = path
# Load the grid images:
grid_images = []
grid_dir = os.path.dirname(output_save_dir)
for f in os.listdir(grid_dir):
if "validation_grid" in f:
grid_image = Image.open(os.path.join(grid_dir, f))
grid_image = np.array(grid_image).astype(np.float32) / 255.0
grid_image = torch.from_numpy(grid_image)
grid_images.append(grid_image)
grid_images = torch.stack(grid_images)
# Make sure that grid_images always has 4 dimensions:
if len(grid_images.shape) == 3:
grid_images = grid_images.unsqueeze(0)
final_msg = f"LoRa trained in {config.job_time/60:.1f} minutes. Files saved at {output_save_dir}"
return (grid_images, lora_path, embedding_path, final_msg)