-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
184 lines (157 loc) · 7.54 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
from models.networks import Define_G, Define_D
import torch.optim as optim
from config import Config
import os
import os.path as osp
from torch.utils.data import DataLoader
from torchvision import transforms
from data.regular_dataset import RegularDataset
from data.demo_dataset import DemoDataset
from utils.transforms import create_part
from time import time
import datetime
import torch.backends.cudnn as cudnn
import numpy as np
from torchvision import utils
from PIL import Image
from utils import pose_utils
import torch.nn.functional as F
from utils.warp_image import warped_image
from lib.geometric_matching_multi_gpu import GMM
from torchvision import utils
from PIL import Image
import time
import cv2
r"""
Forward function for vitural try-on
Note :
Set opt.istest == True for arbitrary pose and given image
Set istrain = False and opt.istest == False for validating data in the validation dataset in end2end manner
"""
def load_model(model, path):
checkpoint = torch.load(path)
try:
model.load_state_dict(checkpoint)
except:
model.load_state_dict(checkpoint.state_dict())
model = model.cuda()
model.eval()
print(20*'=')
for param in model.parameters():
param.requires_grad = False
def forward(opt, paths, gpu_ids, refine_path):
cudnn.enabled = True
cudnn.benchmark = True
opt.output_nc = 3
gmm = GMM(opt)
gmm = torch.nn.DataParallel(gmm).cuda()
# 'batch'
generator_parsing = Define_G(opt.input_nc_G_parsing, opt.output_nc_parsing, opt.ndf, opt.netG_parsing, opt.norm,
not opt.no_dropout, opt.init_type, opt.init_gain, opt.gpu_ids)
generator_app_cpvton = Define_G(opt.input_nc_G_app, opt.output_nc_app, opt.ndf, opt.netG_app, opt.norm,
not opt.no_dropout, opt.init_type, opt.init_gain, opt.gpu_ids, with_tanh=False)
generator_face = Define_G(opt.input_nc_D_face, opt.output_nc_face, opt.ndf, opt.netG_face, opt.norm,
not opt.no_dropout, opt.init_type, opt.init_gain, opt.gpu_ids)
models = [gmm, generator_parsing, generator_app_cpvton, generator_face]
for model, path in zip(models, paths):
load_model(model, path)
print('==>loaded model')
augment = {}
if '0.4' in torch.__version__:
augment['3'] = transforms.Compose([
# transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
]) # change to [C, H, W]
augment['1'] = augment['3']
else:
augment['3'] = transforms.Compose([
# transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
]) # change to [C, H, W]
augment['1'] = transforms.Compose([
# transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]) # change to [C, H, W]
val_dataset = DemoDataset(opt, augment=augment)
val_dataloader = DataLoader(
val_dataset,
shuffle=False,
drop_last=False,
num_workers=opt.num_workers,
batch_size = opt.batch_size_v,
pin_memory=True)
with torch.no_grad():
for i, result in enumerate(val_dataloader):
'warped cloth'
warped_cloth = warped_image(gmm, result)
if opt.warp_cloth:
warped_cloth_name = result['warped_cloth_name']
warped_cloth_path = os.path.join('dataset', 'warped_cloth', warped_cloth_name[0])
if not os.path.exists(os.path.split(warped_cloth_path)[0]):
os.makedirs(os.path.split(warped_cloth_path)[0])
utils.save_image(warped_cloth * 0.5 + 0.5, warped_cloth_path)
print('processing_%d'%i)
continue
source_parse = result['source_parse'].float().cuda()
target_pose_embedding = result['target_pose_embedding'].float().cuda()
source_image = result['source_image'].float().cuda()
cloth_parse = result['cloth_parse'].cuda()
cloth_image = result['cloth_image'].cuda()
target_pose_img = result['target_pose_img'].float().cuda()
cloth_parse = result['cloth_parse'].float().cuda()
source_parse_vis = result['source_parse_vis'].float().cuda()
"filter add cloth infomation"
real_s = source_parse
index = [x for x in list(range(20)) if x != 5 and x != 6 and x != 7]
real_s_ = torch.index_select(real_s, 1, torch.tensor(index).cuda())
input_parse = torch.cat((real_s_, target_pose_embedding, cloth_parse), 1).cuda()
'P'
generate_parse = generator_parsing(input_parse) # tanh
generate_parse = F.softmax(generate_parse, dim=1)
generate_parse_argmax = torch.argmax(generate_parse, dim=1, keepdim=True).float()
res = []
for index in range(20):
res.append(generate_parse_argmax == index)
generate_parse_argmax = torch.cat(res, dim=1).float()
"A"
image_without_cloth = create_part(source_image, source_parse, 'image_without_cloth', False)
input_app = torch.cat((image_without_cloth, warped_cloth, generate_parse), 1).cuda()
generate_img = generator_app_cpvton(input_app)
p_rendered, m_composite = torch.split(generate_img, 3, 1)
p_rendered = F.tanh(p_rendered)
m_composite = F.sigmoid(m_composite)
p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite)
refine_img = p_tryon
"F"
generate_face = create_part(refine_img, generate_parse_argmax, 'face', False)
generate_img_without_face = refine_img - generate_face
source_face = create_part(source_image, source_parse, 'face', False)
input_face = torch.cat((source_face, generate_face), 1)
fake_face = generator_face(input_face)
fake_face = create_part(fake_face, generate_parse_argmax, 'face', False)
refine_img = generate_img_without_face + fake_face
"generate parse vis"
if opt.save_time:
generate_parse_vis = source_parse_vis
else:
generate_parse_vis = torch.argmax(generate_parse, dim=1, keepdim=True).permute(0,2,3,1).contiguous()
generate_parse_vis = pose_utils.decode_labels(generate_parse_vis)
"save results"
images = [source_image, cloth_image, target_pose_img, warped_cloth, source_parse_vis, generate_parse_vis, p_tryon, refine_img]
pose_utils.save_img(images, os.path.join(refine_path, '%d.jpg')%(i))
torch.cuda.empty_cache()
if __name__ == "__main__":
resume_gmm = "pretrained_checkpoint/step_009000.pth"
resume_G_parse = 'pretrained_checkpoint/parsing.tar'
resume_G_app_cpvton = 'pretrained_checkpoint/app.tar'
resume_G_face = 'pretrained_checkpoint/face.tar'
paths = [resume_gmm, resume_G_parse, resume_G_app_cpvton, resume_G_face]
opt = Config().parse()
if not os.path.exists(opt.forward_save_path):
os.makedirs(opt.forward_save_path)
forward(opt, paths, 4, opt.forward_save_path)