-
Notifications
You must be signed in to change notification settings - Fork 0
/
eemd.m
139 lines (121 loc) · 5.02 KB
/
eemd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
%function allmode=eemd(Y,Nstd,NE)
%
% This is an EMD/EEMD program
%
% INPUT:
% Y: Inputted data;1-d data only
% Nstd: ratio of the standard deviation of the added noise and that of Y;
% NE: Ensemble number for the EEMD
% OUTPUT:
% A matrix of N*(m+1) matrix, where N is the length of the input
% data Y, and m=fix(log2(N))-1. Column 1 is the original data, columns 2, 3, ...
% m are the IMFs from high to low frequency, and comlumn (m+1) is the
% residual (over all trend).
%
% NOTE:
% It should be noted that when Nstd is set to zero and NE is set to 1, the
% program degenerates to a EMD program.(for EMD Nstd=0,NE=1)
% This code limited sift number=10 ,the stoppage criteria can't change.
%
% References:
% Wu, Z., and N. E Huang (2008),
% Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method.
% Advances in Adaptive Data Analysis. Vol.1, No.1. 1-41.
%
% code writer: Zhaohua Wu.
% footnote:S.C.Su 2009/03/04
%
% There are three loops in this code coupled together.
% 1.read data, find out standard deviation ,devide all data by std
% 2.evaluate TNM as total IMF number--eq1.
% TNM2=TNM+2,original data and residual included in TNM2
% assign 0 to TNM2 matrix
% 3.Do EEMD NE times-------------------------------------------------------------loop EEMD start
% 4.add noise
% 5.give initial values before sift
% 6.start to find an IMF------------------------------------------------IMF loop start
% 7.sift 10 times to get IMF--------------------------sift loop start and end
% 8.after 10 times sift --we got IMF
% 9.subtract IMF from data ,and let the residual to find next IMF by loop
% 6.after having all the IMFs---------------------------------------------IMF loop end
% 9.after TNM IMFs ,the residual xend is over all trend
% 3.Sum up NE decomposition result-------------------------------------------------loop EEMD end
% 10.Devide EEMD summation by NE,std be multiply back to data
%
% Association: no
% this function ususally used for doing 1-D EEMD with fixed
% stoppage criteria independently.
%
% Concerned function: extrema.m
% above mentioned m file must be put together
function allmode=eemd(Y,Nstd,NE)
%part1.read data, find out standard deviation ,devide all data by std
xsize=length(Y);
dd=1:1:xsize;
Ystd=std(Y);
Y=Y/Ystd;
%part2.evaluate TNM as total IMF number,ssign 0 to TNM2 matrix
TNM=fix(log2(xsize))-1;
TNM2=TNM+2;
for kk=1:1:TNM2,
for ii=1:1:xsize,
allmode(ii,kk)=0.0;
end
end
%part3 Do EEMD -----EEMD loop start
for iii=1:1:NE, %EEMD loop -NE times EMD sum together
%part4 --Add noise to original data,we have X1
for i=1:xsize,
temp=randn(1,1)*Nstd;
X1(i)=Y(i)+temp;
end
%part4 --assign original data in the first column
for jj=1:1:xsize,
mode(jj,1) = Y(jj);
end
%part5--give initial 0 to xorigin and xend
xorigin = X1;
xend = xorigin;
%part6--start to find an IMF-----IMF loop start
nmode = 1;
while nmode <= TNM,
xstart = xend; %last loop value assign to new iteration loop
%xstart -loop start data
iter = 1; %loop index initial value
%part7--sift 10 times to get IMF---sift loop start
while iter<=10,
[spmax, spmin, flag]=extrema(xstart); %call function extrema
%the usage of spline ,please see part11.
upper= spline(spmax(:,1),spmax(:,2),dd); %upper spline bound of this sift
lower= spline(spmin(:,1),spmin(:,2),dd); %lower spline bound of this sift
mean_ul = (upper + lower)/2;%spline mean of upper and lower
xstart = xstart - mean_ul;%extract spline mean from Xstart
iter = iter +1;
end
%part7--sift 10 times to get IMF---sift loop end
%part8--subtract IMF from data ,then let the residual xend to start to find next IMF
xend = xend - xstart;
nmode=nmode+1;
%part9--after sift 10 times,that xstart is this time IMF
for jj=1:1:xsize,
mode(jj,nmode) = xstart(jj);
end
end
%part6--start to find an IMF-----IMF loop end
%part 10--after gotten all(TNM) IMFs ,the residual xend is over all trend
% put them in the last column
for jj=1:1:xsize,
mode(jj,nmode+1)=xend(jj);
end
%after part 10 ,original +TNM-IMF+overall trend ---those are all in mode
allmode=allmode+mode;
end
%part3 Do EEMD -----EEMD loop end
%part10--devide EEMD summation by NE,std be multiply back to data
allmode=allmode/NE;
allmode=allmode*Ystd;
%part11--the syntax of the matlab function spline
%yy= spline(x,y,xx); this means
%x and y are matrixs of n1 points ,use n1 set (x,y) to form the cubic spline
%xx and yy are matrixs of n2 points,we want know the spline value yy(y-axis) in the xx (x-axis)position
%after the spline is formed by n1 points ,find coordinate value on the spline for [xx,yy] --n2 position.