-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathcompute_dialogue_embeddings.py
180 lines (132 loc) · 5.96 KB
/
compute_dialogue_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
"""
This script computes dialogue embeddings for dialogues found in a text file.
"""
#!/usr/bin/env python
import argparse
import cPickle
import traceback
import logging
import time
import sys
import math
import os
import numpy
import codecs
import search
import utils
from dialog_encdec import DialogEncoderDecoder
from numpy_compat import argpartition
from state import prototype_state
logger = logging.getLogger(__name__)
class Timer(object):
def __init__(self):
self.total = 0
def start(self):
self.start_time = time.time()
def finish(self):
self.total += time.time() - self.start_time
def parse_args():
parser = argparse.ArgumentParser("Compute dialogue embeddings from model")
parser.add_argument("model_prefix",
help="Path to the model prefix (without _model.npz or _state.pkl)")
parser.add_argument("dialogues",
help="File of input dialogues (tab separated)")
parser.add_argument("output",
help="Output file")
parser.add_argument("--verbose",
action="store_true", default=False,
help="Be verbose")
parser.add_argument("--use-second-last-state",
action="store_true", default=False,
help="Outputs the second last dialogue encoder state instead of the last one")
return parser.parse_args()
def compute_encodings(joined_contexts, model, model_compute_encoding, output_second_last_state = False):
# TODO Fix seqlen below
seqlen = 600
context = numpy.zeros((seqlen, len(joined_contexts)), dtype='int32')
context_lengths = numpy.zeros(len(joined_contexts), dtype='int32')
second_last_utterance_position = numpy.zeros(len(joined_contexts), dtype='int32')
for idx in range(len(joined_contexts)):
context_lengths[idx] = len(joined_contexts[idx])
if context_lengths[idx] < seqlen:
context[:context_lengths[idx], idx] = joined_contexts[idx]
else:
# If context is longer tham max context, truncate it and force the end-of-utterance token at the end
context[:seqlen, idx] = joined_contexts[idx][0:seqlen]
context[seqlen-1, idx] = model.eos_sym
context_lengths[idx] = seqlen
eos_indices = list(numpy.where(context[:context_lengths[idx], idx] == model.eos_sym)[0])
if len(eos_indices) > 1:
second_last_utterance_position[idx] = eos_indices[-2]
else:
second_last_utterance_position[idx] = context_lengths[idx]
n_samples = len(joined_contexts)
# Generate the reversed context
reversed_context = model.reverse_utterances(context)
encoder_states = model_compute_encoding(context, reversed_context, seqlen+1)
hidden_states = encoder_states[-2] # hidden state for the "context" encoder, h_s,
# and last hidden state of the utterance "encoder", h
#hidden_states = encoder_states[-1] # mean for the stochastic latent variable, z
if output_second_last_state:
second_last_hidden_state = numpy.zeros((hidden_states.shape[1], hidden_states.shape[2]), dtype='float64')
for i in range(hidden_states.shape[1]):
second_last_hidden_state[i, :] = hidden_states[second_last_utterance_position[i], i, :]
return second_last_hidden_state
else:
return hidden_states[-1, :, :]
def main():
args = parse_args()
state = prototype_state()
state_path = args.model_prefix + "_state.pkl"
model_path = args.model_prefix + "_model.npz"
with open(state_path) as src:
state.update(cPickle.load(src))
logging.basicConfig(level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")
state['bs'] = 10
model = DialogEncoderDecoder(state)
if os.path.isfile(model_path):
logger.debug("Loading previous model")
model.load(model_path)
else:
raise Exception("Must specify a valid model path")
contexts = [[]]
lines = open(args.dialogues, "r").readlines()
if len(lines):
contexts = [x.strip() for x in lines]
model_compute_encoding = model.build_encoder_function()
dialogue_encodings = []
# Start loop
joined_contexts = []
batch_index = 0
batch_total = int(math.ceil(float(len(contexts)) / float(model.bs)))
for context_id, context_sentences in enumerate(contexts):
# Convert contexts into list of ids
joined_context = []
if len(context_sentences) == 0:
joined_context = [model.eos_sym]
else:
joined_context = model.words_to_indices(context_sentences.split())
if joined_context[0] != model.eos_sym:
joined_context = [model.eos_sym] + joined_context
if joined_context[-1] != model.eos_sym:
joined_context += [model.eos_sym]
#print 'joined_context', joined_context
joined_contexts.append(joined_context)
if len(joined_contexts) == model.bs:
batch_index = batch_index + 1
logger.debug("[COMPUTE] - Got batch %d / %d" % (batch_index, batch_total))
encs = compute_encodings(joined_contexts, model, model_compute_encoding, args.use_second_last_state)
for i in range(len(encs)):
dialogue_encodings.append(encs[i])
joined_contexts = []
if len(joined_contexts) > 0:
logger.debug("[COMPUTE] - Got batch %d / %d" % (batch_total, batch_total))
encs = compute_encodings(joined_contexts, model, model_compute_encoding, args.use_second_last_state)
for i in range(len(encs)):
dialogue_encodings.append(encs[i])
# Save encodings to disc
cPickle.dump(dialogue_encodings, open(args.output + '.pkl', 'w'))
if __name__ == "__main__":
main()
# THEANO_FLAGS=mode=FAST_COMPILE,floatX=float32 python compute_dialogue_embeddings.py tests/models/1462302387.69_testmodel tests/data/tvalid_contexts.txt Latent_Variable_Means --verbose --use-second-last-state