forked from MathMarEcol/ZoopModelSizeSpectra
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ZooMSS_PDE.R
193 lines (147 loc) · 8.89 KB
/
ZooMSS_PDE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
## Numerical implementation of ZooMSS v1 (see Heneghan et al. 2016: https://doi.org/10.3389/fmars.2016.00201)
## Author: Ryan Heneghan
## Last updated: September 2019
ZooMSS_PDE <- function(state, parms, test){
with(as.list(c(state, parms)),{
################### CONSTANT STUFF ###################
## Beta values for zooplankton and fish
beta = matrix(0,2,length(x))
beta[1,c(xfminref:xmaxref)] = log(beta.fish) # beta for fish
# Functions to calculate zooplankton beta
D.z <- 2*(3*w[c((xzminref-1):xzmaxref)]*1e12/(4*pi))^(1/3)# convert body mass g to ESD (um)
beta.z <- function(m.){
betaz = log((exp(0.02*log(D.z/D.0)^2 - m. + 1.832))^3)
return(betaz)
}
beta[2,c((xzminref-1):xzmaxref)] <- beta.z(m)
q1 = matrix(NA, length(x), length(y))
lx = ly = log(w)
for (i in 1:length(y)) { q1[,i] = ly[i] - lx}
betafish.mat <- matrix(beta[1,], nrow = length(x), ncol = length(y) , byrow = TRUE)
betazoo.mat <- matrix(beta[2,], nrow = length(x), ncol = length(y), byrow = TRUE)
phi.f = function(qmat,beta.mat,sigma, A, alpha){ # feeding kernel function
qtemp = qmat - beta.mat
phi=ifelse(beta.mat != 0,exp(-(qtemp)^2/(2*sigma*sigma))/(sigma*sqrt(2*pi)),0)
gphi = phi # growth kernel matrix
## Multiply by search rate
search = matrix(A*10^(alpha*x), nrow = length(x), ncol = length(y), byrow = TRUE)
mphi = phi*search # mortality kernel matrix (prey are rows, predators are columns)
gphi = t(mphi) # growth kernel matrix (predators are rows, prey are columns)
return(list(gphi,mphi))
}
## Weight diff matrices
wgdiff <- (10^-x)%*%t(10^x)/log(10)
wddiff <- (10^-x)%*%t(10^(2*x))/log(10)
## Growth efficiency rates
effic.fish = matrix(I(x>=x[xfminref])*(1-(w/w[xmaxref])^(r-n)), nrow = length(x), ncol = length(y))
effic.zoo = matrix(I(x >= x[xzminref-1] & x <= x[xzmaxref])*(1-(w/w[xzmaxref])^(r-n)), nrow = length(x), ncol = length(y))
effic.zoo[is.nan(effic.zoo)] = 0
## Simpson's Rule vector for integration
simp <- array(1, dim = length(x))
simp[c(seq(2,length(x)-1,2))] = 4
simp[c(seq(3,length(x)-2,2))] = 2
sm <- matrix(simp, nrow = length(x), ncol = length(x), byrow = TRUE)*(dx/3)
# Calculate matrices for all constant parts of growth, diffusion and death integrals
gphi.f = K.f*matrix(unlist(phi.f(q1, betafish.mat, sigma.f, gamma.f, alpha.f)[1]), nrow = length(x), ncol = length(y))*wgdiff*sm # fish growth integral matrix
dphi.f = (K.f^2/2)*matrix(unlist(phi.f(q1, betafish.mat, sigma.f, gamma.f, alpha.f)[1]), nrow = length(x), ncol = length(y))*wddiff*sm # fish diffusion integral matrix
mphi.f = matrix(unlist(phi.f(q1, betafish.mat, sigma.f, gamma.f, alpha.f)[2]), nrow = length(x), ncol = length(y))*sm # fish mortality integral matrix
gphi.z = K.z*matrix(unlist(phi.f(q1, betazoo.mat, 1, gamma.z, alpha.z)[1]), nrow = length(x), ncol = length(y))*wgdiff*sm # fish growth integral matrix
dphi.z = (K.z^2/2)*matrix(unlist(phi.f(q1, betazoo.mat, sigma.z, gamma.z, alpha.z)[1]), nrow = length(x), ncol = length(y))*wddiff*sm # fish diffusion integral matrix
mphi.z = matrix(unlist(phi.f(q1, betazoo.mat, sigma.z, gamma.z, alpha.z)[2]), nrow = length(x), ncol = length(y))*sm # fish mortality integral matrix
## Time steps vector for ode
time.steps <- seq(0, tmaxyears, dt)
####################################################
################ DYNAMIC EQUATIONS #################
N.z.st = c(array(0,c(1,(xzminref-1))), state[1:(xzmaxref-xzminref + 1)], array(0, c(1, c(xmaxref-xzmaxref))))
N.f.st = c(array(0,c(1,xfminref-1)), state[(xzmaxref-xzminref + 2): length(state)])
## Storage arrays
# Matrices for recording phytoplankton, zooplankton, fish and community size spectra
N.z = N.f = N.c = array(0, c(length(x), N))
state.new = array(0, c(length(state), N))
# Matrices for keeping track of ingested food
F.z = F.f = G.z = G.f = array(0, c(length(x), N))
# Matrices for keeping track of mortality
M.z = M.f = array(0, c(length(x), N))
N.z[,1] = N.z.st
N.f[,1] = N.f.st
N.c[,1] = init.spec
if(test == 1){
pb <- txtProgressBar(min = 0, max = N, style = 3)
plot(x, log10(N.c[,1]), type="l", xlim=c(xmin,xmax))
}
state.new[,1] = state
for(i in 1:(N-1)){
if(test == 1){setTxtProgressBar(pb,i)}
#### Calculate growth, mortality and diffusion integrals
N.pmat = matrix(N.p, nrow = length(x), ncol = length(x), byrow = TRUE)
N.zmat = matrix(N.z[,i], nrow = length(x), ncol = length(x), byrow = TRUE)
N.fmat = matrix(N.f[,i], nrow = length(x), ncol = length(x), byrow = TRUE)
# Background and senescence mortality
BM.z = (S.0*w^(s) + k.zsm*10^(p.zs*(x-xzs)))*I(x>=x[xzminref] & x<=x[xzmaxref])
BM.f = (S.0*w^(s) + k.sm*10^(p.zs*(x-xs)))*I(x>=x[xfminref])
## Zooplankton integrals
growth.z = (rowSums((gphi.z*N.pmat)) + rowSums((gphi.z*N.zmat)) + rowSums((gphi.z*N.fmat)))
mort.z = rowSums((mphi.z*N.pmat)) + rowSums((mphi.z*N.zmat)) + rowSums((mphi.z*N.fmat)) + BM.z
diff.z = (rowSums((dphi.z*N.pmat)) + rowSums((dphi.z*N.zmat)) + rowSums((dphi.z*N.fmat)))
## Fish integrals
growth.f = (rowSums((gphi.f*N.pmat)) + rowSums((gphi.f*N.zmat)) + rowSums((gphi.f*N.fmat)))
mort.f = rowSums((mphi.f*N.pmat)) + rowSums((mphi.f*N.zmat)) + rowSums((mphi.f*N.fmat)) + BM.f
diff.f = (rowSums((dphi.f*N.pmat)) + rowSums((dphi.f*N.zmat)) + rowSums((dphi.f*N.fmat)))
### Store growth and mortality
F.z[,i] = growth.z/K.z
F.f[,i] = growth.f/K.f
G.z[,i] = growth.z
G.f[,i] = growth.f
M.z[,i] = mort.z
M.f[,i] = mort.f
########################################################
####### ZOOPLANKTON
#### Solve Mvf first
N.z.iter = array(0, c(1, (xzmaxref - xzminref + 1)))
G.0 = G.z[xzminref-1,i]
A.z.iter = 1 + dt/dx*G.z[(xzminref:xzmaxref),i] + dt*M.z[(xzminref:xzmaxref),i]
B.z.iter = c(dt/dx*G.0, dt/dx*G.z[(xzminref:(xzmaxref-1)),i])
N.z.iter = (N.z[c(xzminref:xzmaxref),i] + c(N.p[xzminref-1], N.z[xzminref:(xzmaxref-1),i])*B.z.iter)/A.z.iter
### Solve MvF with diffusion
A.z = c(dt/dx*G.0, dt/dx*G.z[(xzminref:(xzmaxref-1)),i]) +
c(0, diff.z[(xzminref:(xzmaxref-2))]*dt/(2*dx^2), 0)
B.z = 1 + dt/dx*G.z[(xzminref:xzmaxref),i] + dt*M.z[(xzminref:xzmaxref),i] +
c(0, dt/(dx^2)*diff.z[(xzminref +1):(xzmaxref - 1)] ,0)
C.z = c(0, dt/(2*dx^2)*diff.z[(xzminref+2): xzmaxref]*N.z.iter[3:length(N.z.iter)], 0)
N.z[(xzminref:xzmaxref),i+1] = (N.z[c(xzminref:xzmaxref),i] +
c(N.p[xzminref-1], N.z[xzminref:(xzmaxref-1),i])*A.z + C.z)/B.z
####### FISH
#### Solve Mvf first
N.f.iter = array(0, c(1, (xmaxref - xfminref + 1)))
G.0 = G.z[xfminref-1,i]
A.f.iter = 1 + dt/dx*G.f[(xfminref:xmaxref),i] + dt*M.f[(xfminref:xmaxref),i]
B.f.iter = c(dt/dx*G.0, dt/dx*G.f[(xfminref:(xmaxref-1)),i])
N.f.iter = (N.f[c(xfminref:xmaxref),i] + c(N.z[xfminref-1], N.f[xfminref:(xmaxref-1),i])*B.f.iter)/A.f.iter
### Solve MvF with diffusion
A.f = c(dt/dx*G.0, dt/dx*G.f[(xfminref:(xmaxref-1)),i]) +
c(0, diff.f[(xfminref:(xmaxref-2))]*dt/(2*dx^2), 0)
B.f = 1 + dt/dx*G.f[(xfminref:xmaxref),i] + dt*M.f[(xfminref:xmaxref),i] +
c(0, dt/(dx^2)*diff.f[(xfminref +1):(xmaxref - 1)] ,0)
C.f = c(0, dt/(2*dx^2)*diff.f[(xfminref+2): xmaxref]*N.f.iter[3:length(N.f.iter)], 0)
N.f[(xfminref:xmaxref),i+1] = (N.f[c(xfminref:xmaxref),i] +
c(N.z[xfminref-1], N.f[xfminref:(xmaxref-1),i])*A.f + C.f)/B.f
N.f[xfminref, i+1] = N.z[xfminref, i+1]
####### COMMUNITY
state.new[,i+1] = c(N.z[(xzminref:xzmaxref),i+1], N.f[(xfminref:xmaxref),i+1])
####### LIVE PLOT
if(test == 1){
N.c[1:(xzminref-1),i+1] = N.p[1:(xzminref-1)]
N.c[xzminref:(xfminref-1), i+1] = N.z[xzminref:(xfminref-1),i+1]
N.c[xfminref:xmaxref, i+1] = N.f[xfminref:xmaxref,i+1]
r = rainbow(N, s=1, v=1, start=0, end=max(1,N - 1)/N)
lines(x, log10(N.z[,i]), type="l", col=r[i], cex=1.2)
lines(x, log10(N.f[,i]), type="l", col =r[i], cex = 1.2)
}
} # End MvF-D loop
return(list(state.new, F.z, F.f, M.z, M.f)) # state.new is saved abundances of zoo and fish
# F.z is feeding rate of zooplankton
# F.f is feeding rate of fish
# M.z is mortality rate of zooplankton
# M.f is mortality rate of fish
}) # End with(as.list())...
} # End ZooMSS_PDE