-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpst_handler.py
578 lines (520 loc) · 22.5 KB
/
pst_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import copy
import numpy as np
import pandas
'''tries to do all lower case for strings
'''
S = str
I = np.int
F = np.float
FMT = {I:'{0:10.0f} ',S:'{0:20s} ',F:'{0:15.7G} '}
DTYPES = {'RSTFLE':S,'PESTMODE':S,'NPAR':I,'NOBS':I,'NPARGP':I,'NPRIOR':I,'NOBSGP':I,'MAXCOMPDIM':I,\
'NTPLFLE':I,'NINSFLE':I,'PRECIS':S,'DPOINT':S,'NUMCOM':I,'JACFILE':I,'MESSFILE':I,'OBSREREF':S,\
'RLAMBDA1':F,'RLAMFAC':F,'PHIRATSUF':F,'PHIREDLAM':F,'NUMLAM':I,'JACUPDATE':I,'LAMFORGIVE':S,\
'RELPARMAX':F,'FACPARMAX':F,'FACORIG':F,'IBOUNDSTICK':F,'UPVECBEND':F,'ABSPARMAX':F,\
'PHIREDSWH':F,'NOPTSWITCH':I,'SPLITSWH':F,'DOAUI':S,'DOSENREUSE':S,\
'NOPTMAX':I,'PHIREDSTP':F,'NPHISTP':I,'NPHINORED':I,'RELPARSTP':F,'NRELPAR':I,'PHISTOPTHRESH':F,\
'LASTRUN':I,'PHIABANDON':S,'ICOV':I,'ICOR':I,'IEIG':I,'IRES':I,'JCOSAVE':S,'VERBOSEREC':S,'JCOSAVEITN':S,\
'REISAVEITN':S,'PARSAVEITN':S,'PARSAVERUN':S,'SVDMODE':I,'MAXSING':I,'EIGTHRESH':F,'EIGWRITE':I,\
'PARGPNME':S,'INCTYP':S,'DERINC':F,'DERINCLB':F,'FORCEN':S,'DERINCMUL':F,'DERMTHD':S,\
'SPLITTHRESH':F,'SPLITRELDIFF':F,'SPLITACTION':S,'PARNME':S,'PARTRANS':S,'PARCHGLIM':S,'PARVAL1':F,\
'PARLBND':F,'PARUBND':F,'PARGP':S,'SCALE':F,'OFFSET':F,'DERCOM':I,'OBSNME':S,'OBSVAL':F,'WEIGHT':F,'OBGNME':S,\
'PILBL':S,'PI_EQUATION':S,'WEIGHT':F,'OBGNME':S,'PHIMLIM':F,'PHIMACCEPT':F,'FRACPHIM':F,'MEMSAVE':S,\
'WFINIT':F,'WFMIN':F,'WFMAX':F,'LINREG':S,'REGCONTINUE':S,\
'WFFAC':F,'WFTOL':F,'IREGADJ':I,'NOPTREGADJ':I,'REGWEIGHTRAT':F,'REGSINGTHRESH':F,'COMLINE':S,\
'MODEL_INTERFACE_FILE':S,'MODEL_FILE':S,'PARTIED':S,"GTARG":F}
PST_BASE = '''pcf
* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]
NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM JACFILE MESSFILE] [OBSREREF]
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE] [LAMFORGIVE]
RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND] [ABSPARMAX]
PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN] [PHIABANDON]
ICOV ICOR IEIG [IRES] [JCOSAVE] [VERBOSEREC] [JCOSAVEITN] [REISAVEITN] [PARSAVEITN] [PARSAVERUN]
* automatic user intervention
MAXAUI AUISTARTOPT NOAUIPHIRAT AUIRESTITN
AUISENSRAT AUIHOLDMAXCHG AUINUMFREE
AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT
* singular value decomposition
SVDMODE
MAXSING EIGTHRESH
EIGWRITE
* lsqr
LSQRMODE
LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM
LSQRWRITE
* svd assist
BASEPESTFILE
BASEJACFILE
SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC SVDA_PAR_EXCL
* sensitivity reuse
SENRELTHRESH SENMAXREUSE
SENALLCALCINT SENPREDWEIGHT SENPIEXCLUDE
* parameter groups
PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD [SPLITTHRESH SPLITRELDIFF SPLITACTION]
(one such line for each of NPARGP parameter groups)
* parameter data
PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM
(one such line for each of NPAR parameters)
(one such line for each tied parameter)
* observation groups
OBGNME [GTARG] [COVFLE]
(one such line for each of NOBSGP observation group)
* observation data
OBSNME OBSVAL WEIGHT OBGNME
(one such line for each of NOBS observations)
* derivatives command line
DERCOMLINE
EXTDERFLE
* model command line
COMLINE
(one such line for each of NUMCOM command lines)
* model input/output
MODEL_INTERFACE_FILE MODEL_FILE
(one such line for each of NTPLFLE template files)
* prior information
PILBL PI_EQUATION WEIGHT OBGNME
(one such line for each of NPRIOR articles of prior information)
* predictive analysis
NPREDMAXMIN [PREDNOISE]
PD0 PD1 PD2
ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH
ABSPREDSWH RELPREDSWH
NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP
* regularisation
PHIMLIM PHIMACCEPT [FRACPHIM] [MEMSAVE]
WFINIT WFMIN WFMAX [LINREG] [REGCONTINUE]
WFFAC WFTOL IREGADJ [NOPTREGADJ REGWEIGHTRAT [REGSINGTHRESH]]
* pareto
PARETO_OBSGROUP
PARETO_WTFAC_START PARETO_WTFAC_FIN NUM_WTFAC_INC
NUM_ITER_START NUM_ITER_GEN NUM_ITER_FIN
ALT_TERM
OBS_TERM ABOVE_OR_BELOW OBS_THRESH NUM_ITER_THRESH (only if ALT_TERM is non-zero)
NOBS_REPORT
OBS_REPORT_1 OBS_REPORT_2 OBS_REPORT_3.. (NOBS_REPORT items)'''
class entry():
def __init__(self,value=None,dtype=None,required=True,name=None):
self.__value = value
if dtype == None:
dtype = type(value)
self.dtype = dtype
self.name = name
self.required = required
@property
def value(self):
return self.__value
@property
def string(self):
return FMT[self.dtype].format(self.__value)
def __eq__(self,other):
if self.dtype == S:
if self.__value.lower() == other.lower():
return True
else:
return False
elif self.__value == other:
return True
else:
return False
def __repr__(self):
return str(self.name) + ': '+self.string
def set_value(self,value):
if self.dtype == I:
try:
self.__value = np.int(value)
except:
if self.required:
raise Exception('unable to cast '+str(value)+' to type '+str(self.dtype)+' for entry '+str(self.name))
else:
#print 'Warning - unable to cast '+str(value)+' to type '+str(self.dtype)+' for non-required entry '+str(self.name)
pass
elif self.dtype == F:
try:
self.__value = np.float(value)
except:
if self.required:
raise Exception('unable to cast '+str(value)+' to type '+str(self.dtype)+' for entry '+str(self.name))
else:
#print 'Warning - unable to cast '+str(value)+' to type '+str(self.dtype)+' for non-required entry '+str(self.name)
pass
elif self.dtype == S:
try:
self.__value = str(value).lower()
except:
if self.required:
raise Exception('unable to cast '+str(value)+' to type '+str(self.dtype)+' for entry '+str(self.name))
else:
#print 'Warning - unable to cast '+str(value)+' to type '+str(self.dtype)+' for non-required entry '+str(self.name)
pass
else:
raise Exception('unsupported dtype: '+str(self.dtype))
class pst():
def __init__(self,filename=None):
self.DTYPES = DTYPES
self.dtypes_2_lower()
self.build_pst_structure()
if filename:
self.read_pst(filename)
def dtypes_2_lower(self):
dts = {}
for key,value in self.DTYPES.iteritems():
dts[key.lower()] = value
self.DTYPES = dts
#--override set so that direct assignment can be used for the entry attributes
def __setattr__(self,name,value):
try:
attr = getattr(self,name)
except:
self.__dict__[name] = value
return
if isinstance(attr,entry):
attr.set_value(value)
self.__dict__[name] = attr
pass
else:
self.__dict__[name] = value
#----------------------------------------------------------
#--IO stuff
#----------------------------------------------------------
def build_pst_structure(self):
'''load the text pst structure
into nested lists for output structure
Also builds the required list by looking
for '[' and ']' and builds the repeatable entry list
by keying on the '(' and ')'
special treatment of the tied parameter mess
'''
#--nested list of parameter names
pst_list = []
#--nested list of bools for required pars
req_list = []
#--list of bools for repeatable entries (pars,obs,etc)
#--one entry for each section
rep = False
section_dict = {}
section_entries = {}
secrtion_required = {}
section_order = []
#--parse and build
lines = PST_BASE.split('\n')
l_count = 0
last = 'pcf'
entries = {}
for line in lines:
line = line.strip().lower()
#--if this is a control marker, then set req as False
if line.startswith('*'):
section_dict[last] = {'parameters':pst_list,'required':req_list,'repeatable':rep}
section_entries[last] = entries
section_order.append(line)
last = line
pst_list = []
req_list = []
entries = {}
rep = False
#--otherwise
else:
if '(' not in line:
pst_list.append([])
req_list.append([])
rep = False
raw = line.strip().split()
rq = True
for i,r in enumerate(raw):
if r.startswith('['):
rq = False
req_list[-1].append(rq)
#if r.endswith(']'):
# rq = True
r = r.replace('[','')
r = r.replace(']','')
#--this is the only place in the whole damn class that needs upper
if r in self.DTYPES.keys():
e = entry(None,dtype=self.DTYPES[r],name=r,required=rq)
entries[r] = e
else:
# 'warning',r,'not found in DTYPES'
pass
pst_list[-1].append(r)
else:
rep = True
l_count += 1
section_dict[last] = {'parameters':pst_list,'required':req_list,'repeatable':rep}
section_entries[last] = entries
#--set a needed flag for each section
section_needed = {}
for key in section_dict.keys():
section_needed[key] = False
self.structure = section_dict
self.needed = section_needed
self.sections = section_entries
self.section_order = section_order
return
def parse_line(self,line,section_marker):
if 'PRIOR' in section_marker.upper():
raw = line.strip().split()
new_line = [raw[0],' '.join(raw[1:-2]),raw[-2],raw[-1]]
return new_line
elif "COMMAND" in section_marker.upper():
return [line]
else:
return line.strip().split()
def read_pst_section(self,f,section_marker):
'''read a non-repeatable section - set the entry instance values
'''
l_count = 0
params = self.structure[section_marker]['parameters']
while True:
line_start_pointer = f.tell()
line = f.readline().strip().lower()
if line == '':
break
elif line.startswith('*'):
f.seek(line_start_pointer)
return
raw = self.parse_line(line,section_marker)
for r,p in zip(raw,params[l_count]):
self.sections[section_marker][p].set_value(r)
l_count += 1
def read_pst_repeatable_section(self,f,section_marker):
'''read a repeatable section - build pandas dataframes
'''
#--create a dict structure to store the entries
params = self.structure[section_marker]['parameters'][0]
records = {}
for key in params:
records[key] = []
while True:
line_start_pointer = f.tell()
line = f.readline().strip().lower()
if line == '':
break
elif line.startswith('*'):
f.seek(line_start_pointer)
#print f.readline()
break
raw = self.parse_line(line,section_marker)
for p,r in zip(params,raw):
records[p].append(r)
#--set the missing entries as NaNs
mx = 0
for key,rec in records.iteritems():
if len(rec) == 0:
records[key] = np.NaN
if mx < len(rec):
mx = len(rec)
if mx == 0 :
raise Exception('zero-length repeatable section: '+str(section_marker))
elif mx == 1:
index = [0]
df = pandas.DataFrame(records,index=index)
else:
df = pandas.DataFrame(records)
#--set the numeric dataframe column types
for key in df.keys():
if key in self.DTYPES and self.DTYPES[key] in [I,F]:
df[key] = df[key].astype(self.DTYPES[key])
#--pop off null columns
for key,series in df.iteritems():
if len(series.dropna()) == 0:
df.pop(key)
self.sections[section_marker] = df
return
def read_pst(self,filename):
'''read an existing PST file
'''
f = open(filename,'r')
#--read the pcf line
f.readline()
l_count,p_count = 1,1
while True:
line = f.readline().strip().lower()
if line == '':
break
#--if this is the start of a section
elif '*' in line:
self.needed[line] = True
p_count += 1
rep = self.structure[line]['repeatable']
if not rep:
self.read_pst_section(f,line)
else:
df = self.read_pst_repeatable_section(f,line)
self.__to_attrs()
f.close()
def __to_attrs(self):
for key,record in self.sections.iteritems():
attr_base = self.control_2_attr(key)
setattr(self,attr_base,record)
for ename,entry in record.iteritems():
#attr = attr_base+'.'+ename.lower()
attr = ename.lower()
setattr(self,attr,entry)
self.sections = None
def write_pst(self,filename):
f = open(filename,'w',0)
f.write('pcf\n')
for sname in self.section_order:
if self.needed[sname] and getattr(self,self.control_2_attr(sname)) is not None:
f.write(sname+'\n')
structure = self.structure[sname]
#section = getattr(self,self.control_2_attr(sname))
#--iterate over each line
rep = structure['repeatable']
if not rep:
for plist,rqlist in zip(structure['parameters'],structure['required']):
for p in plist:
if hasattr(self,p):
attr = getattr(self,p)
if attr.value != None:
f.write(attr.string)
f.write('\n')
else:
attr = getattr(self,self.control_2_attr(sname))
keys = attr.keys()
partied_section = None
if 'partied' in keys :
attr = copy.deepcopy(attr)
partied_groups = attr.groupby('partied').groups
partied_section = ''
for key,idxs in partied_groups.iteritems():
if key.lower() != 'none':
for idx in idxs:
partied_section += FMT[DTYPES['PARNME']].format(attr.ix[idx]['parnme'])
partied_section += FMT[DTYPES['PARTIED']].format(attr.ix[idx]['partied'])
partied_section += '\n'
attr['partied'] = ''
dtypes,fmts = {},{}
for k in keys:
dtypes[k] = self.DTYPES[k]
fmts[k] = FMT[self.DTYPES[k]]
for idx,rec in attr.iterrows():
for plist,rqlist in zip(structure['parameters'],structure['required']):
for p in plist:
if p in keys:
f.write(fmts[p].format(rec[p]))
f.write('\n')
if partied_section:
f.write(partied_section)
f.close()
def control_2_attr(self,cstring):
return cstring.replace('*','').strip().replace(' ','_')
def attr_2_control(self,astring):
return '* '+astring.replace('_',' ')
#----------------------------------------------------------
#--some very basic logic
#----------------------------------------------------------
def remove_from_df_attr(self,attr_name,col_name,needed_list):
attr = getattr(self,attr_name)
sel = []
for value in attr[col_name].values:
if value not in needed_list:
sel.append(False)
else:
sel.append(True)
attr = attr[sel]
setattr(self,attr_name,attr)
return
def compare_list_elements(self,list1,list2):
for e1 in list1:
if e1 not in list2:
return False
for e2 in list2:
if e2 not in list1:
return False
return True
def update(self,bottomup=True):
self.update_parameter_info(bottomup)
self.update_observation_info(bottomup)
self.update_prior_info(bottomup)
def parse_pi_equation(self,p_str):
'''parses the pi equation string into pifacs,parnmes,pival
'''
operators = ['+','-','*','/']
lhs,rhs = p_str.split('=')
pival = float(rhs)
lhs_tokens = lhs.split()
#--take steps of 3
parnames,pifacs = [],[]
for pifac,operator,raw_parnme in zip(lhs_tokens[0::3],lhs_tokens[1::3],lhs_tokens[2::3]):
parnme = raw_parnme.replace(')','').replace('log(','').lower()
pifac = float(pifac)
parnames.append(parnme)
pifacs.append(pifac)
return {'parnme':parnames,'pifac':pifacs,'pival':pival}
def reconcile_prior_2_pars(self):
'''checks for missing parameter names in pi equations
'''
par_names = list(self.parameter_data.parnme)
pi_equation_strings = list(self.prior_information.pi_equation)
sel = []
for pi_eq in pi_equation_strings:
pars = self.parse_pi_equation(pi_eq)['parnme']
missing = False
for p in pars:
if p not in par_names or self.parameter_data.partrans[self.parameter_data.parnme==p] in ['fixed','tied']:
missing = True
break
if missing:
sel.append(False)
else:
sel.append(True)
self.prior_information = self.prior_information[sel]
self.nprior.set_value(self.prior_information.shape[0])
return
def update_prior_info(self,bottomup):
if self.prior_information is not None:
unique_groups = list(self.observation_data['obgnme'].unique())
unique_groups.extend(list(self.prior_information['obgnme'].unique()))
existing_groups = self.observation_groups['obgnme'].values
same = self.compare_list_elements(unique_groups,existing_groups)
if not same:
if not bottomup:
self.remove_from_df_attr('prior_information','obgnme',existing_groups)
else:
self.remove_from_df_attr('observation_groups','obgnme',unique_groups)
self.nprior.set_value(self.prior_information.shape[0])
else:
unique_groups = list(self.observation_data['obgnme'].unique())
self.remove_from_df_attr('observation_groups','obgnme',unique_groups)
self.nprior.set_value(0)
nobsgp = self.observation_groups.shape[0]
self.nobsgp.set_value(nobsgp)
def update_observation_info(self,bottomup):
unique_groups = list(self.observation_data['obgnme'].unique())
#if self.prior_information is not None:
try:
unique_groups.extend(list(self.prior_information['obgnme'].unique()))
except:
pass
existing_groups = self.observation_groups['obgnme'].values
same = self.compare_list_elements(unique_groups,existing_groups)
if not same:
#--reconcile obs data groups against obs groups
if not bottomup:
self.remove_from_df_attr('observation_data','obgnme',existing_groups)
#--reconcile obs groups against observation data groups
else:
self.remove_from_df_attr('observation_groups','obgnme',unique_groups)
#--if there are any observation data with an unknown group
self.nobs.set_value(self.observation_data.shape[0])
try:
self.update_prior_info(bottomup)
except:
pass
nobsgp = self.observation_groups.shape[0]
self.nobsgp.set_value(nobsgp)
def update_parameter_info(self,bottomup):
unique_groups = self.parameter_data['pargp'].unique()
existing_groups = self.parameter_groups['pargpnme'].values
same = self.compare_list_elements(unique_groups,existing_groups)
if not same:
if not bottomup:
self.remove_from_df_attr('parameter_data','pargp',existing_groups)
else:
self.remove_from_df_attr('parameter_groups','pargpnme',unique_groups)
self.npar.set_value(self.parameter_data.shape[0])
self.npargp.set_value(self.parameter_groups.shape[0])
self.maxsing.set_value(self.parameter_data.shape[0])