forked from latex3/unicode-math
-
Notifications
You must be signed in to change notification settings - Fork 0
/
amsmath-testmath.tex
2307 lines (2110 loc) · 78.7 KB
/
amsmath-testmath.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% This is the AMS's testmath.tex modified to check unicode-math output.
\documentclass{article}
\pagestyle{headings}
\title{Sample Paper for the \pkg{amsmath} Package\\
File name: \fn{testmath.tex}}
\author{American Mathematical Society}
\date{Version 2.0, 1999/11/15}
\usepackage{amsmath,amsthm,trace}
\usepackage{unicode-math}
\setmainfont{XITS}
\setmathfont{XITS Math}
% Some definitions useful in producing this sort of documentation:
\chardef\bslash=`\\ % p. 424, TeXbook
% Normalized (nonbold, nonitalic) tt font, to avoid font
% substitution warning messages if tt is used inside section
% headings and other places where odd font combinations might
% result.
\newcommand{\ntt}{\normalfont\ttfamily}
% command name
\newcommand{\cn}[1]{{\protect\ntt\bslash#1}}
% LaTeX package name
\newcommand{\pkg}[1]{{\protect\ntt#1}}
% File name
\newcommand{\fn}[1]{{\protect\ntt#1}}
% environment name
\newcommand{\env}[1]{{\protect\ntt#1}}
\hfuzz1pc % Don't bother to report overfull boxes if overage is < 1pc
% Theorem environments
%% \theoremstyle{plain} %% This is the default
\newtheorem{thm}{Theorem}[section]
\newtheorem{cor}[thm]{Corollary}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{ax}{Axiom}
\theoremstyle{definition}
\newtheorem{defn}{Definition}[section]
\theoremstyle{remark}
\newtheorem{rem}{Remark}[section]
\newtheorem*{notation}{Notation}
%\numberwithin{equation}{section}
\newcommand{\thmref}[1]{Theorem~\ref{#1}}
\newcommand{\secref}[1]{\S\ref{#1}}
\newcommand{\lemref}[1]{Lemma~\ref{#1}}
\newcommand{\bysame}{\mbox{\rule{3em}{.4pt}}\,}
% Math definitions
\newcommand{\A}{\mathcal{A}}
\newcommand{\BB}{\mathcal{B}}
\newcommand{\st}{\sigma}
\newcommand{\XcY}{{(X,Y)}}
\newcommand{\SX}{{S_X}}
\newcommand{\SY}{{S_Y}}
\newcommand{\SXY}{{S_{X,Y}}}
\newcommand{\SXgYy}{{S_{X|Y}(y)}}
\newcommand{\Cw}[1]{{\hat C_#1(X|Y)}}
\newcommand{\GG}{{G(X|Y)}}
\newcommand{\PY}{{P_{\mathcal{Y}}}}
\newcommand{\X}{\mathcal{X}}
\newcommand{\wt}{\widetilde}
\newcommand{\wh}{\widehat}
\DeclareMathOperator{\per}{per}
\DeclareMathOperator{\cov}{cov}
\DeclareMathOperator{\non}{non}
\DeclareMathOperator{\cf}{cf}
\DeclareMathOperator{\add}{add}
\DeclareMathOperator{\Cham}{Cham}
\DeclareMathOperator{\IM}{Im}
\DeclareMathOperator{\esssup}{ess\,sup}
\DeclareMathOperator{\meas}{meas}
\DeclareMathOperator{\seg}{seg}
% \interval is used to provide better spacing after a [ that
% is used as a closing delimiter.
\newcommand{\interval}[1]{\mathinner{#1}}
% Notation for an expression evaluated at a particular condition. The
% optional argument can be used to override automatic sizing of the
% right vert bar, e.g. \eval[\biggr]{...}_{...}
\newcommand{\eval}[2][\right]{\relax
\ifx#1\right\relax \left.\fi#2#1\rvert}
% Enclose the argument in vert-bar delimiters:
\newcommand{\envert}[1]{\left\lvert#1\right\rvert}
\let\abs=\envert
% Enclose the argument in double-vert-bar delimiters:
\newcommand{\enVert}[1]{\left\lVert#1\right\rVert}
\let\norm=\enVert
\begin{document}
\maketitle
\markboth{Sample paper for the {\protect\ntt\lowercase{amsmath}} package}
{Sample paper for the {\protect\ntt\lowercase{amsmath}} package}
\renewcommand{\sectionmark}[1]{}
\section{Introduction}
This paper contains examples of various features from \AmS-\LaTeX{}.
\section{Enumeration of Hamiltonian paths in a graph}
Let $\mathbf{A}=(a_{ij})$ be the adjacency matrix of graph $G$. The
corresponding Kirchhoff matrix $\mathbf{K}=(k_{ij})$ is obtained from
$\mathbf{A}$ by replacing in $-\mathbf{A}$ each diagonal entry by the
degree of its corresponding vertex; i.e., the $i$th diagonal entry is
identified with the degree of the $i$th vertex. It is well known that
\begin{equation}
\det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$},
\quad i=1,\dots,n
\end{equation}
where $\mathbf{K}(i|i)$ is the $i$th principal submatrix of
$\mathbf{K}$.
\begin{verbatim}
\det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$},
\end{verbatim}
Let $C_{i(j)}$ be the set of graphs obtained from $G$ by attaching edge
$(v_iv_j)$ to each spanning tree of $G$. Denote by $C_i=\bigcup_j
C_{i(j)}$. It is obvious that the collection of Hamiltonian cycles is a
subset of $C_i$. Note that the cardinality of $C_i$ is $k_{ii}\det
\mathbf{K}(i|i)$. Let $\wh X=\{\hat x_1,\dots,\hat x_n\}$.
\begin{verbatim}
$\wh X=\{\hat x_1,\dots,\hat x_n\}$
\end{verbatim}
Define multiplication for the elements of $\wh X$ by
\begin{equation}\label{multdef}
\hat x_i\hat x_j=\hat x_j\hat x_i,\quad \hat x^2_i=0,\quad
i,j=1,\dots,n.
\end{equation}
Let $\hat k_{ij}=k_{ij}\hat x_j$ and $\hat k_{ij}=-\sum_{j\not=i} \hat
k_{ij}$. Then the number of Hamiltonian cycles $H_c$ is given by the
relation \cite{liuchow:formalsum}
\begin{equation}\label{H-cycles}
\biggl(\prod^n_{\,j=1}\hat x_j\biggr)H_c=\frac{1}{2}\hat k_{ij}\det
\wh{\mathbf{K}}(i|i),\qquad i=1,\dots,n.
\end{equation}
The task here is to express \eqref{H-cycles}
in a form free of any $\hat x_i$,
$i=1,\dots,n$. The result also leads to the resolution of enumeration of
Hamiltonian paths in a graph.
It is well known that the enumeration of Hamiltonian cycles and paths in
a complete graph $K_n$ and in a complete bipartite graph $K_{n_1n_2}$
can only be found from \textit{first combinatorial principles}
\cite{hapa:graphenum}. One wonders if there exists a formula which can
be used very efficiently to produce $K_n$ and $K_{n_1n_2}$. Recently,
using Lagrangian methods, Goulden and Jackson have shown that $H_c$ can
be expressed in terms of the determinant and permanent of the adjacency
matrix \cite{gouja:lagrmeth}. However, the formula of Goulden and
Jackson determines neither $K_n$ nor $K_{n_1n_2}$ effectively. In this
paper, using an algebraic method, we parametrize the adjacency matrix.
The resulting formula also involves the determinant and permanent, but
it can easily be applied to $K_n$ and $K_{n_1n_2}$. In addition, we
eliminate the permanent from $H_c$ and show that $H_c$ can be
represented by a determinantal function of multivariables, each variable
with domain $\{0,1\}$. Furthermore, we show that $H_c$ can be written by
number of spanning trees of subgraphs. Finally, we apply the formulas to
a complete multigraph $K_{n_1\dots n_p}$.
The conditions $a_{ij}=a_{ji}$, $i,j=1,\dots,n$, are not required in
this paper. All formulas can be extended to a digraph simply by
multiplying $H_c$ by 2.
\section{Main Theorem}
\label{s:mt}
\begin{notation} For $p,q\in P$ and $n\in\omega$ we write
$(q,n)\le(p,n)$ if $q\le p$ and $A_{q,n}=A_{p,n}$.
\begin{verbatim}
\begin{notation} For $p,q\in P$ and $n\in\omega$
...
\end{notation}
\end{verbatim}
\end{notation}
Let $\mathbf{B}=(b_{ij})$ be an $n\times n$ matrix. Let $\mathbf{n}=\{1,
\dots,n\}$. Using the properties of \eqref{multdef}, it is readily seen
that
\begin{lem}\label{lem-per}
\begin{equation}
\prod_{i\in\mathbf{n}}
\biggl(\sum_{\,j\in\mathbf{n}}b_{ij}\hat x_i\biggr)
=\biggl(\prod_{\,i\in\mathbf{n}}\hat x_i\biggr)\per \mathbf{B}
\end{equation}
where $\per \mathbf{B}$ is the permanent of $\mathbf{B}$.
\end{lem}
Let $\wh Y=\{\hat y_1,\dots,\hat y_n\}$. Define multiplication
for the elements of $\wh Y$ by
\begin{equation}
\hat y_i\hat y_j+\hat y_j\hat y_i=0,\quad i,j=1,\dots,n.
\end{equation}
Then, it follows that
\begin{lem}\label{lem-det}
\begin{equation}\label{detprod}
\prod_{i\in\mathbf{n}}
\biggl(\sum_{\,j\in\mathbf{n}}b_{ij}\hat y_j\biggr)
=\biggl(\prod_{\,i\in\mathbf{n}}\hat y_i\biggr)\det\mathbf{B}.
\end{equation}
\end{lem}
Note that all basic properties of determinants are direct consequences
of Lemma ~\ref{lem-det}. Write
\begin{equation}\label{sum-bij}
\sum_{j\in\mathbf{n}}b_{ij}\hat y_j=\sum_{j\in\mathbf{n}}b^{(\lambda)}
_{ij}\hat y_j+(b_{ii}-\lambda_i)\hat y_i\hat y
\end{equation}
where
\begin{equation}
b^{(\lambda)}_{ii}=\lambda_i,\quad b^{(\lambda)}_{ij}=b_{ij},
\quad i\not=j.
\end{equation}
Let $\mathbf{B}^{(\lambda)}=(b^{(\lambda)}_{ij})$. By \eqref{detprod}
and \eqref{sum-bij}, it is
straightforward to show the following
result:
\begin{thm}\label{thm-main}
\begin{equation}\label{detB}
\det\mathbf{B}=
\sum^n_{l =0}\sum_{I_l \subseteq n}
\prod_{i\in I_l}(b_{ii}-\lambda_i)
\det\mathbf{B}^{(\lambda)}(I_l |I_l ),
\end{equation}
where $I_l =\{i_1,\dots,i_l \}$ and $\mathbf{B}^{(\lambda)}(I_l |I_l )$
is the principal submatrix obtained from $\mathbf{B}^{(\lambda)}$
by deleting its $i_1,\dots,i_l $ rows and columns.
\end{thm}
\begin{rem}
Let $\mathbf{M}$ be an $n\times n$ matrix. The convention
$\mathbf{M}(\mathbf{n}|\mathbf{n})=1$ has been used in \eqref{detB} and
hereafter.
\end{rem}
Before proceeding with our discussion, we pause to note that
\thmref{thm-main} yields immediately a fundamental formula which can be
used to compute the coefficients of a characteristic polynomial
\cite{mami:matrixth}:
\begin{cor}\label{BI}
Write $\det(\mathbf{B}-x\mathbf{I})=\sum^n_{l =0}(-1)
^l b_l x^l $. Then
\begin{equation}\label{bl-sum}
b_l =\sum_{I_l \subseteq\mathbf{n}}\det\mathbf{B}(I_l |I_l ).
\end{equation}
\end{cor}
Let
\begin{equation}
\mathbf{K}(t,t_1,\dots,t_n)
=\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\
-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\
\hdotsfor[2]{4}\\
-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix},
\end{equation}
\begin{verbatim}
\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\
-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\
\hdotsfor[2]{4}\\
-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix}
\end{verbatim}
where
\begin{equation}
D_i=\sum_{j\in\mathbf{n}}a_{ij}t_j,\quad i=1,\dots,n.
\end{equation}
Set
\begin{equation*}
D(t_1,\dots,t_n)=\frac{\delta}{\delta t}\eval{\det\mathbf{K}(t,t_1,\dots,t_n)
}_{t=1}.
\end{equation*}
Then
\begin{equation}\label{sum-Di}
D(t_1,\dots,t_n)
=\sum_{i\in\mathbf{n}}D_i\det\mathbf{K}(t=1,t_1,\dots,t_n; i|i),
\end{equation}
where $\mathbf{K}(t=1,t_1,\dots,t_n; i|i)$ is the $i$th principal
submatrix of $\mathbf{K}(t=1,t_1,\dots,t_n)$.
Theorem ~\ref{thm-main} leads to
\begin{equation}\label{detK1}
\det\mathbf{K}(t_1,t_1,\dots,t_n)
=\sum_{I\in\mathbf{n}}(-1)^{\envert{I}}t^{n-\envert{I}}
\prod_{i\in I}t_i\prod_{j\in I}(D_j+\lambda_jt_j)\det\mathbf{A}
^{(\lambda t)}(\overline{I}|\overline I).
\end{equation}
Note that
\begin{equation}\label{detK2}
\det\mathbf{K}(t=1,t_1,\dots,t_n)=\sum_{I\in\mathbf{n}}(-1)^{\envert{I}}
\prod_{i\in I}t_i\prod_{j\in I}(D_j+\lambda_jt_j)\det\mathbf{A}
^{(\lambda)}(\overline{I}|\overline{I})=0.
\end{equation}
Let $t_i=\hat x_i,i=1,\dots,n$. Lemma ~\ref{lem-per} yields
\begin{multline}
\biggl(\sum_{\,i\in\mathbf{n}}a_{l _i}x_i\biggr)
\det\mathbf{K}(t=1,x_1,\dots,x_n;l |l )\\
=\biggl(\prod_{\,i\in\mathbf{n}}\hat x_i\biggr)
\sum_{I\subseteq\mathbf{n}-\{l \}}
(-1)^{\envert{I}}\per\mathbf{A}^{(\lambda)}(I|I)
\det\mathbf{A}^{(\lambda)}
(\overline I\cup\{l \}|\overline I\cup\{l \}).
\label{sum-ali}
\end{multline}
\begin{verbatim}
\begin{multline}
\biggl(\sum_{\,i\in\mathbf{n}}a_{l _i}x_i\biggr)
\det\mathbf{K}(t=1,x_1,\dots,x_n;l |l )\\
=\biggl(\prod_{\,i\in\mathbf{n}}\hat x_i\biggr)
\sum_{I\subseteq\mathbf{n}-\{l \}}
(-1)^{\envert{I}}\per\mathbf{A}^{(\lambda)}(I|I)
\det\mathbf{A}^{(\lambda)}
(\overline I\cup\{l \}|\overline I\cup\{l \}).
\label{sum-ali}
\end{multline}
\end{verbatim}
By \eqref{H-cycles}, \eqref{detprod}, and \eqref{sum-bij}, we have
\begin{prop}\label{prop:eg}
\begin{equation}
H_c=\frac1{2n}\sum^n_{l =0}(-1)^{l}
D_{l},
\end{equation}
where
\begin{equation}\label{delta-l}
D_{l}=\eval[2]{\sum_{I_{l}\subseteq \mathbf{n}}
D(t_1,\dots,t_n)}_{t_i=\left\{\begin{smallmatrix}
0,& \text{if }i\in I_{l}\quad\\% \quad added for centering
1,& \text{otherwise}\end{smallmatrix}\right.\;,\;\; i=1,\dots,n}.
\end{equation}
\end{prop}
\section{Application}
\label{lincomp}
We consider here the applications of Theorems~\ref{th-info-ow-ow} and
~\ref{th-weak-ske-owf} to a complete
multipartite graph $K_{n_1\dots n_p}$. It can be shown that the
number of spanning trees of $K_{n_1\dots n_p}$
may be written
\begin{equation}\label{e:st}
T=n^{p-2}\prod^p_{i=1}
(n-n_i)^{n_i-1}
\end{equation}
where
\begin{equation}
n=n_1+\dots+n_p.
\end{equation}
It follows from Theorems~\ref{th-info-ow-ow} and
~\ref{th-weak-ske-owf} that
\begin{equation}\label{e:barwq}
\begin{split}
H_c&=\frac1{2n}
\sum^n_{{l}=0}(-1)^{l}(n-{l})^{p-2}
\sum_{l _1+\dots+l _p=l}\prod^p_{i=1}
\binom{n_i}{l _i}\\
&\quad\cdot[(n-l )-(n_i-l _i)]^{n_i-l _i}\cdot
\biggl[(n-l )^2-\sum^p_{j=1}(n_i-l _i)^2\biggr].\end{split}
\end{equation}
\begin{verbatim}
... \binom{n_i}{l _i}\\
\end{verbatim}
and
\begin{equation}\label{joe}
\begin{split}
H_c&=\frac12\sum^{n-1}_{l =0}
(-1)^{l}(n-l )^{p-2}
\sum_{l _1+\dots+l _p=l}
\prod^p_{i=1}\binom{n_i}{l _i}\\
&\quad\cdot[(n-l )-(n_i-l _i)]^{n_i-l _i}
\left(1-\frac{l _p}{n_p}\right)
[(n-l )-(n_p-l _p)].
\end{split}
\end{equation}
The enumeration of $H_c$ in a $K_{n_1\dotsm n_p}$ graph can also be
carried out by Theorem ~\ref{thm-H-param} or ~\ref{thm-asym}
together with the algebraic method of \eqref{multdef}.
Some elegant representations may be obtained. For example, $H_c$ in
a $K_{n_1n_2n_3}$ graph may be written
\begin{equation}\label{j:mark}
\begin{split}
H_c=&
\frac{n_1!\,n_2!\,n_3!}
{n_1+n_2+n_3}\sum_i\left[\binom{n_1}{i}
\binom{n_2}{n_3-n_1+i}\binom{n_3}{n_3-n_2+i}\right.\\
&+\left.\binom{n_1-1}{i}
\binom{n_2-1}{n_3-n_1+i}
\binom{n_3-1}{n_3-n_2+i}\right].\end{split}
\end{equation}
\section{Secret Key Exchanges}
\label{SKE}
Modern cryptography is fundamentally concerned with the problem of
secure private communication. A Secret Key Exchange is a protocol
where Alice and Bob, having no secret information in common to start,
are able to agree on a common secret key, conversing over a public
channel. The notion of a Secret Key Exchange protocol was first
introduced in the seminal paper of Diffie and Hellman
\cite{dihe:newdir}. \cite{dihe:newdir} presented a concrete
implementation of a Secret Key Exchange protocol, dependent on a
specific assumption (a variant on the discrete log), specially
tailored to yield Secret Key Exchange. Secret Key Exchange is of
course trivial if trapdoor permutations exist. However, there is no
known implementation based on a weaker general assumption.
The concept of an informationally one-way function was introduced
in \cite{imlelu:oneway}. We give only an informal definition here:
\begin{defn} A polynomial time
computable function $f = \{f_k\}$ is informationally
one-way if there is no probabilistic polynomial time algorithm which
(with probability of the form $1 - k^{-e}$ for some $e > 0$)
returns on input $y \in \{0,1\}^{k}$ a random element of $f^{-1}(y)$.
\end{defn}
In the non-uniform setting \cite{imlelu:oneway} show that these are not
weaker than one-way functions:
\begin{thm}[\cite{imlelu:oneway} (non-uniform)]
\label{th-info-ow-ow}
The existence of informationally one-way functions
implies the existence of one-way functions.
\end{thm}
We will stick to the convention introduced above of saying
``non-uniform'' before the theorem statement when the theorem
makes use of non-uniformity. It should be understood that
if nothing is said then the result holds for both the uniform and
the non-uniform models.
It now follows from \thmref{th-info-ow-ow} that
\begin{thm}[non-uniform]\label{th-weak-ske-owf} Weak SKE
implies the existence of a one-way function.
\end{thm}
More recently, the polynomial-time, interior point algorithms for linear
programming have been extended to the case of convex quadratic programs
\cite{moad:quadpro,ye:intalg}, certain linear complementarity problems
\cite{komiyo:lincomp,miyoki:lincomp}, and the nonlinear complementarity
problem \cite{komiyo:unipfunc}. The connection between these algorithms
and the classical Newton method for nonlinear equations is well
explained in \cite{komiyo:lincomp}.
\section{Review}
\label{computation}
We begin our discussion with the following definition:
\begin{defn}
A function $H\colon \Re^n \to \Re^n$ is said to be
\emph{B-differentiable} at the point $z$ if (i)~$H$ is Lipschitz
continuous in a neighborhood of $z$, and (ii)~ there exists a positive
homogeneous function $BH(z)\colon \Re^n \to \Re^n$, called the
\emph{B-derivative} of $H$ at $z$, such that
\[ \lim_{v \to 0} \frac{H(z+v) - H(z) - BH(z)v}{\enVert{v}} = 0. \]
The function $H$ is \textit{B-differentiable in set $S$} if it is
B-differentiable at every point in $S$. The B-derivative $BH(z)$ is said
to be \textit{strong} if
\[ \lim_{(v,v') \to (0,0)} \frac{H(z+v) - H(z+v') - BH(z)(v
-v')}{\enVert{v - v'}} = 0. \]
\end{defn}
\begin{lem}\label{limbog} There exists a smooth function $\psi_0(z)$
defined for $\abs{z}>1-2a$ satisfying the following properties\textup{:}
\begin{enumerate}
\renewcommand{\labelenumi}{(\roman{enumi})}
\item $\psi_0(z)$ is bounded above and below by positive constants
$c_1\leq \psi_0(z)\leq c_2$.
\item If $\abs{z}>1$, then $\psi_0(z)=1$.
\item For all $z$ in the domain of $\psi_0$, $\Delta_0\ln \psi_0\geq 0$.
\item If $1-2a<\abs{z}<1-a$, then $\Delta_0\ln \psi_0\geq
c_3>0$.
\end{enumerate}
\end{lem}
\begin{proof}
We choose $\psi_0(z)$ to be a radial function depending only on $r=\abs{z}$.
Let $h(r)\geq 0$ be a suitable smooth function satisfying $h(r)\geq c_3$
for $1-2a<\abs{z}<1-a$, and $h(r)=0$ for $\abs{z}>1-\tfrac a2$. The radial
Laplacian
\[\Delta_0\ln\psi_0(r)=\left(\frac {d^2}{dr^2}+\frac
1r\frac d{dr}\right)\ln\psi_0(r)\]
has smooth coefficients for $r>1-2a$. Therefore, we may
apply the existence and uniqueness theory for ordinary differential
equations. Simply let $\ln \psi_0(r)$ be the solution of the differential
equation
\[\left(\frac{d^2}{dr^2}+\frac 1r\frac d{dr}\right)\ln \psi_0(r)=h(r)\]
with initial conditions given by $\ln \psi_0(1)=0$ and
$\ln\psi_0'(1)=0$.
Next, let $D_\nu$ be a finite collection of pairwise disjoint disks,
all of which are contained in the unit disk centered at the origin in
$C$. We assume that $D_\nu=\{z\mid \abs{z-z_\nu}<\delta\}$. Suppose that
$D_\nu(a)$ denotes the smaller concentric disk $D_\nu(a)=\{z\mid
\abs{z-z_\nu}\leq (1-2a)\delta\}$. We define a smooth weight function
$\Phi_0(z)$ for $z\in C-\bigcup_\nu D_\nu(a)$ by setting $\Phi_
0(z)=1$ when $z\notin \bigcup_\nu D_\nu$ and $\Phi_
0(z)=\psi_0((z-z_\nu)/\delta)$ when $z$ is an element of $D_\nu$. It
follows from \lemref{limbog} that $\Phi_ 0$ satisfies the properties:
\begin{enumerate}
\renewcommand{\labelenumi}{(\roman{enumi})}
\item \label{boundab}$\Phi_ 0(z)$ is bounded above and below by
positive constants $c_1\leq \Phi_ 0(z)\leq c_2$.
\item \label{d:over}$\Delta_0\ln\Phi_ 0\geq 0$ for all
$z\in C-\bigcup_\nu D_\nu(a)$,
the domain where the function $\Phi_ 0$ is defined.
\item \label{d:ad}$\Delta_0\ln\Phi_ 0\geq c_3\delta^{-2}$
when $(1-2a)\delta<\abs{z-z_\nu}<(1-a)\delta$.
\end{enumerate}
Let $A_\nu$ denote the annulus $A_\nu=\{(1-2a)\delta<\abs{z-z_\nu}<(1-a)
\delta \}$, and set $A=\bigcup_\nu A_\nu$. The
properties (\ref{d:over}) and (\ref{d:ad}) of $\Phi_ 0$
may be summarized as $\Delta_0\ln \Phi_ 0\geq c_3\delta^{-2}\chi_A$,
where $\chi _A$ is the characteristic function of $A$.
\end{proof}
Suppose that $\alpha$ is a nonnegative real constant. We apply
Proposition~\ref{prop:eg} with $\Phi(z)=\Phi_ 0(z) e^{\alpha\abs{z}^2}$. If
$u\in C^\infty_0(R^2-\bigcup_\nu D_\nu(a))$, assume that $\mathcal{D}$
is a bounded domain containing the support of $u$ and $A\subset
\mathcal{D}\subset R^2-\bigcup_\nu D_\nu(a)$. A calculation gives
\[\int_{\mathcal{D}}\abs{\overline\partial u}^2\Phi_ 0(z) e^{\alpha\abs{z}^2}
\geq c_4\alpha\int_{\mathcal{D}}\abs{u}^2\Phi_ 0e^{\alpha\abs{z}^2}
+c_5\delta^{-2}\int_ A\abs{u}^2\Phi_ 0e^{\alpha\abs{z}^2}.\]
The boundedness, property (\ref{boundab}) of $\Phi_ 0$, then yields
\[\int_{\mathcal{D}}\abs{\overline\partial u}^2e^{\alpha\abs{z}^2}\geq c_6\alpha
\int_{\mathcal{D}}\abs{u}^2e^{\alpha\abs{z}^2}
+c_7\delta^{-2}\int_ A\abs{u}^2e^{\alpha\abs{z}^2}.\]
Let $B(X)$ be the set of blocks of $\Lambda_{X}$
and let $b(X) = \abs{B(X)}$. If $\phi \in Q_{X}$ then
$\phi$ is constant on the blocks of $\Lambda_{X}$.
\begin{equation}\label{far-d}
P_{X} = \{ \phi \in M \mid \Lambda_{\phi} = \Lambda_{X} \},
\qquad
Q_{X} = \{\phi \in M \mid \Lambda_{\phi} \geq \Lambda_{X} \}.
\end{equation}
If $\Lambda_{\phi} \geq \Lambda_{X}$ then
$\Lambda_{\phi} = \Lambda_{Y}$ for some $Y \geq X$ so that
\[ Q_{X} = \bigcup_{Y \geq X} P_{Y}. \]
Thus by M\"obius inversion
\[ \abs{P_{Y}}= \sum_{X\geq Y} \mu (Y,X)\abs{Q_{X}}.\]
Thus there is a bijection from $Q_{X}$ to $W^{B(X)}$.
In particular $\abs{Q_{X}} = w^{b(X)}$.
Next note that $b(X)=\dim X$. We see this by choosing a
basis for $X$ consisting of vectors $v^{k}$ defined by
\[v^{k}_{i}=
\begin{cases} 1 & \text{if $i \in \Lambda_{k}$},\\
0 &\text{otherwise.} \end{cases}
\]
\begin{verbatim}
\[v^{k}_{i}=
\begin{cases} 1 & \text{if $i \in \Lambda_{k}$},\\
0 &\text{otherwise.} \end{cases}
\]
\end{verbatim}
\begin{lem}\label{p0201}
Let $\A$ be an arrangement. Then
\[ \chi (\A,t) = \sum_{\BB \subseteq \A}
(-1)^{\abs{\BB}} t^{\dim T(\BB)}. \]
\end{lem}
In order to compute $R''$ recall the definition
of $S(X,Y)$ from \lemref{lem-per}. Since $H \in \BB$,
$\A_{H} \subseteq \BB$. Thus if $T(\BB) = Y$ then
$\BB \in S(H,Y)$. Let $L'' = L(\A'')$. Then
\begin{equation}\label{E_SXgYy}
\begin{split}
R''&= \sum_{H\in \BB \subseteq \A} (-1)^{\abs{\BB}}
t^{\dim T(\BB)}\\
&= \sum_{Y \in L''} \sum_{\BB \in S(H,Y)}
(-1)^{\abs{\BB}}t^{\dim Y} \\
&= -\sum_{Y \in L''} \sum_{\BB \in S(H,Y)} (-1)^
{\abs{\BB - \A_{H}}} t^{\dim Y} \\
&= -\sum_{Y \in L''} \mu (H,Y)t^{\dim Y} \\
&= -\chi (\A '',t).
\end{split}
\end{equation}
\begin{cor}\label{tripleA}
Let $(\A,\A',\A'')$ be a triple of arrangements. Then
\[ \pi (\A,t) = \pi (\A',t) + t \pi (\A'',t). \]
\end{cor}
\begin{defn}
Let $(\A,\A',\A'')$ be a triple with respect to
the hyperplane $H \in \A$. Call $H$ a \textit{separator}
if $T(\A) \not\in L(\A')$.
\end{defn}
\begin{cor}\label{nsep}
Let $(\A,\A',\A'')$ be a triple with respect to $H \in \A$.
\begin{enumerate}
\renewcommand{\labelenumi}{(\roman{enumi})}
\item
If $H$ is a separator then
\[ \mu (\A) = - \mu (\A'') \]
and hence
\[ \abs{\mu (\A)} = \abs{ \mu (\A'')}. \]
\item If $H$ is not a separator then
\[\mu (\A) = \mu (\A') - \mu (\A'') \]
and
\[ \abs{\mu (\A)} = \abs{\mu (\A')} + \abs{\mu (\A'')}. \]
\end{enumerate}
\end{cor}
\begin{proof}
It follows from \thmref{th-info-ow-ow} that $\pi(\A,t)$
has leading term
\[(-1)^{r(\A)}\mu (\A)t^{r(\A)}.\]
The conclusion
follows by comparing coefficients of the leading
terms on both sides of the equation in
Corollary~\ref{tripleA}. If $H$ is a separator then
$r(\A') < r(\A)$ and there is no contribution
from $\pi (\A',t)$.
\end{proof}
The Poincar\'e polynomial of an arrangement
will appear repeatedly
in these notes. It will be shown to equal the
Poincar\'e polynomial
of the graded algebras which we are going to
associate with $\A$. It is also the Poincar\'e
polynomial of the complement $M(\A)$ for a
complex arrangement. Here we prove
that the Poincar\'e polynomial is the chamber
counting function for a real arrangement. The
complement $M(\A)$ is a disjoint union of chambers
\[M(\A) = \bigcup_{C \in \Cham(\A)} C.\]
The number
of chambers is determined by the Poincar\'e
polynomial as follows.
\begin{thm}\label{th-realarr}
Let $\A_{\mathbf{R}}$ be a real arrangement. Then
\[ \abs{\Cham(\A_{\mathbf{R}})} = \pi (\A_{\mathbf{R}},1). \]
\end{thm}
\begin{proof}
We check the properties required in Corollary~\ref{nsep}:
(i) follows from $\pi (\Phi_{ l},t) = 1$, and (ii) is a
consequence of Corollary~\ref{BI}.
\end{proof}
\begin{figure}
\vspace{5cm}
\caption[]{$Q(\A_{1}) = xyz(x-z)(x+z)(y-z)(y+z)$}
\end{figure}
\begin{figure}
\vspace{5cm}
\caption[]{$Q(\A_{2})= xyz(x+y+z)(x+y-z)(x-y+z)(x-y-z)$}
\end{figure}
\begin{thm}
\label{T_first_the_int}
Let $\phi$ be a protocol for a random pair $\XcY$.
If one of $\st_\phi(x',y)$ and $\st_\phi(x,y')$ is a prefix of the other
and $(x,y)\in\SXY$, then
\[
\langle \st_j(x',y)\rangle_{j=1}^\infty
=\langle \st_j(x,y)\rangle_{j=1}^\infty
=\langle \st_j(x,y')\rangle_{j=1}^\infty .
\]
\end{thm}
\begin{proof}
We show by induction on $i$ that
\[
\langle \st_j(x',y)\rangle_{j=1}^i
=\langle \st_j(x,y)\rangle_{j=1}^i
=\langle \st_j(x,y')\rangle_{j=1}^i.
\]
The induction hypothesis holds vacuously for $i=0$. Assume it holds for
$i-1$, in particular
$[\st_j(x',y)]_{j=1}^{i-1}=[\st_j(x,y')]_{j=1}^{i-1}$. Then one of
$[\st_j(x',y)]_{j=i}^{\infty}$ and $[\st_j(x,y')]_{j=i}^{\infty}$ is a
prefix of the other which implies that one of $\st_i(x',y)$ and
$\st_i(x,y')$ is a prefix of the other. If the $i$th message is
transmitted by $P_\X$ then, by the separate-transmissions property and
the induction hypothesis, $\st_i(x,y)=\st_i(x,y')$, hence one of
$\st_i(x,y)$ and $\st_i(x',y)$ is a prefix of the other. By the
implicit-termination property, neither $\st_i(x,y)$ nor $\st_i(x',y)$
can be a proper prefix of the other, hence they must be the same and
$\st_i(x',y)=\st_i(x,y)=\st_i(x,y')$. If the $i$th message is
transmitted by $\PY$ then, symmetrically, $\st_i(x,y)=\st_i(x',y)$ by
the induction hypothesis and the separate-transmissions property, and,
then, $\st_i(x,y)=\st_i(x,y')$ by the implicit-termination property,
proving the induction step.
\end{proof}
If $\phi$ is a protocol for $(X,Y)$, and $(x,y)$, $(x',y)$ are distinct
inputs in $\SXY$, then, by the correct-decision property,
$\langle\st_j(x,y)\rangle_{j=1}^\infty\ne\langle
\st_j(x',y)\rangle_{j=1}^\infty$.
Equation~(\ref{E_SXgYy}) defined $\PY$'s ambiguity set $\SXgYy$
to be the set of possible $X$ values when $Y=y$.
The last corollary implies that for all $y\in\SY$,
the multiset%
\footnote{A multiset allows multiplicity of elements.
Hence, $\{0,01,01\}$ is prefix free as a set, but not as a multiset.}
of codewords $\{\st_\phi(x,y):x\in\SXgYy\}$ is prefix free.
\section{One-Way Complexity}
\label{S_Cp1}
$\Cw1$, the one-way complexity of a random pair $\XcY$,
is the number of bits $P_\X$ must transmit in the worst case
when $\PY$ is not permitted to transmit any feedback messages.
Starting with $\SXY$, the support set of $\XcY$, we define $\GG$,
the \textit{characteristic hypergraph} of $\XcY$, and show that
\[
\Cw1=\lceil\,\log\chi(\GG)\rceil\ .
\]
Let $\XcY$ be a random pair. For each $y$ in $\SY$, the support set of
$Y$, Equation~(\ref{E_SXgYy}) defined $\SXgYy$ to be the set of possible
$x$ values when $Y=y$. The \textit{characteristic hypergraph} $\GG$ of
$\XcY$ has $\SX$ as its vertex set and the hyperedge $\SXgYy$ for each
$y\in\SY$.
We can now prove a continuity theorem.
\begin{thm}\label{t:conl}
Let $\Omega \subset\mathbf{R}^n$ be an open set, let
$u\in BV(\Omega ;\mathbf{R}^m)$, and let
\begin{equation}\label{quts}
T^u_x=\left\{y\in\mathbf{R}^m:
y=\tilde u(x)+\left\langle \frac{Du}{\abs{Du}}(x),z
\right\rangle \text{ for some }z\in\mathbf{R}^n\right\}
\end{equation}
for every $x\in\Omega \backslash S_u$. Let $f\colon \mathbf{R}^m\to
\mathbf{R}^k$ be a Lipschitz continuous function such that $f(0)=0$, and
let $v=f(u)\colon \Omega \to \mathbf{R}^k$. Then $v\in BV(\Omega
;\mathbf{R}^k)$ and
\begin{equation}
Jv=\eval{(f(u^+)-f(u^-))\otimes \nu_u\cdot\,
\mathcal{H}_{n-1}}_{S_u}.
\end{equation}
In addition, for $\abs{\wt{D}u}$-almost every $x\in\Omega $ the
restriction of the function $f$ to $T^u_x$ is differentiable at $\tilde
u(x)$ and
\begin{equation}
\wt{D}v=\nabla (\eval{f}_{T^u_x})(\tilde u)
\frac{\wt{D}u}{\abs{\wt{D}u}}\cdot\abs{\wt{D}u}.\end{equation}
\end{thm}
Before proving the theorem, we state without proof three elementary
remarks which will be useful in the sequel.
\begin{rem}\label{r:omb}
Let $\omega\colon \left]0,+\infty\right[\to \left]0,+\infty\right[$
be a continuous function such that $\omega (t)\to 0$ as $t\to
0$. Then
\[\lim_{h\to 0^+}g(\omega(h))=L\Leftrightarrow\lim_{h\to
0^+}g(h)=L\]
for any function $g\colon \left]0,+\infty\right[\to \mathbf{R}$.
\end{rem}
\begin{rem}\label{r:dif}
Let $g \colon \mathbf{R}^n\to \mathbf{R}$ be a Lipschitz
continuous function and assume that
\[L(z)=\lim_{h\to 0^+}\frac{g(hz)-g(0)}h\]
exists for every $z\in\mathbf{Q}^n$ and that $L$ is a linear function of
$z$. Then $g$ is differentiable at 0.
\end{rem}
\begin{rem}\label{r:dif0}
Let $A \colon \mathbf{R}^n\to \mathbf{R}^m$ be a linear function, and
let $f \colon \mathbf{R}^m\to \mathbf{R}$ be a function. Then the
restriction of $f$ to the range of $A$ is differentiable at 0 if and
only if $f(A)\colon \mathbf{R}^n\to \mathbf{R}$ is differentiable at 0
and
\[\nabla(\eval{f}_{\IM(A)})(0)A=\nabla (f(A))(0).\]
\end{rem}
\begin{proof}
We begin by showing that $v\in BV(\Omega;\mathbf{R}^k)$ and
\begin{equation}\label{e:bomb}
\abs{Dv}(B)\le K\abs{Du}(B)\qquad\forall B\in\mathbf{B}(\Omega ),
\end{equation}
where $K>0$ is the Lipschitz constant of $f$. By \eqref{sum-Di} and by
the approximation result quoted in \secref{s:mt}, it is possible to find
a sequence $(u_h)\subset C^1(\Omega ;\mathbf{R}^m)$ converging to $u$ in
$L^1(\Omega ;\mathbf{R}^m)$ and such that
\[\lim_{h\to +\infty}\int_\Omega \abs{\nabla u_h}\,dx=\abs{Du}(\Omega ).\]
The functions $v_h=f(u_h)$ are locally Lipschitz continuous in $\Omega
$, and the definition of differential implies that $\abs{\nabla v_h}\le
K\abs{\nabla u_h}$ almost everywhere in $\Omega $. The lower semicontinuity
of the total variation and \eqref{sum-Di} yield
\begin{equation}
\begin{split}
\abs{Dv}(\Omega )\le\liminf_{h\to +\infty}\abs{Dv_h}(\Omega) &
=\liminf_{h\to +\infty}\int_\Omega \abs{\nabla v_h}\,dx\\
&\le K\liminf_{h\to +\infty}\int_\Omega
\abs{\nabla u_h}\,dx=K\abs{Du}(\Omega).
\end{split}\end{equation}
Since $f(0)=0$, we have also
\[\int_\Omega \abs{v}\,dx\le K\int_\Omega \abs{u}\,dx;\]
therefore $u\in BV(\Omega ;\mathbf{R}^k)$. Repeating the same argument
for every open set $A\subset\Omega $, we get \eqref{e:bomb} for every
$B\in\mathbf{B}(\Omega)$, because $\abs{Dv}$, $\abs{Du}$ are Radon measures. To
prove \lemref{limbog}, first we observe that
\begin{equation}\label{e:SS}
S_v\subset S_u,\qquad\tilde v(x)=f(\tilde u(x))\qquad \forall x\in\Omega
\backslash S_u.\end{equation}
In fact, for every $\varepsilon >0$ we have
\[\{y\in B_\rho(x): \abs{v(y)-f(\tilde u(x))}>\varepsilon \}\subset \{y\in
B_\rho(x): \abs{u(y)-\tilde u(x)}>\varepsilon /K\},\]
hence
\[\lim_{\rho\to 0^+}\frac{\abs{\{y\in B_\rho(x): \abs{v(y)-f(\tilde u(x))}>
\varepsilon \}}}{\rho^n}=0\]
whenever $x\in\Omega \backslash S_u$. By a similar argument, if $x\in
S_u$ is a point such that there exists a triplet $(u^+,u^-,\nu_u)$
satisfying \eqref{detK1}, \eqref{detK2}, then
\[
(v^+(x)-v^-(x))\otimes \nu_v=(f(u^+(x))-f(u^-(x)))\otimes\nu_u\quad
\text{if }x\in S_v
\]
and $f(u^-(x))=f(u^+(x))$ if $x\in S_u\backslash S_v$. Hence, by (1.8)
we get
\begin{equation*}\begin{split}
Jv(B)=\int_{B\cap S_v}(v^+-v^-)\otimes \nu_v\,d\mathcal{H}_{n-1}&=
\int_{B\cap S_v}(f(u^+)-f(u^-))\otimes \nu_u\,d\mathcal{H}_{n-1}\\
&=\int_{B\cap S_u}(f(u^+)-f(u^-))\otimes \nu_u\,d\mathcal{H}_{n-1}
\end{split}\end{equation*}
and \lemref{limbog} is proved.
\end{proof}
To prove \eqref{e:SS}, it is not restrictive to assume that $k=1$.
Moreover, to simplify our notation, from now on we shall assume that
$\Omega = \mathbf{R}^n$. The proof of \eqref{e:SS} is divided into two
steps. In the first step we prove the statement in the one-dimensional
case $(n=1)$, using \thmref{th-weak-ske-owf}. In the second step we
achieve the general result using \thmref{t:conl}.
\subsection*{Step 1}
Assume that $n=1$. Since $S_u$ is at most countable, \eqref{sum-bij}
yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that
\eqref{e:st} and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is
the Radon-Nikod\'ym decomposition of $Dv$ in absolutely continuous and
singular part with respect to $\abs{\wt{D} u}$. By
\thmref{th-weak-ske-owf}, we have
\begin{equation*}
\frac{\wt{D}v}{\abs{\wt{D}u}}(t)=\lim_{s\to t^+}
\frac{Dv(\interval{\left[t,s\right[})}
{\abs{\wt{D}u}(\interval{\left[t,s\right[})},\qquad
\frac{\wt{D}u}{\abs{\wt{D}u}}(t)=\lim_{s\to t^+}
\frac{Du(\interval{\left[t,s\right[})}
{\abs{\wt{D}u}(\interval{\left[t,s\right[})}
\end{equation*}
$\abs{\wt{D}u}$-almost everywhere in $\mathbf{R}$. It is well known
(see, for instance, \cite[2.5.16]{ste:sint}) that every one-dimensional
function of bounded variation $w$ has a unique left continuous
representative, i.e., a function $\hat w$ such that $\hat w=w$ almost
everywhere and $\lim_{s\to t^-}\hat w(s)=\hat w(t)$ for every $t\in
\mathbf{R}$. These conditions imply
\begin{equation}
\hat u(t)=Du(\interval{\left]-\infty,t\right[}),
\qquad \hat v(t)=Dv(\interval{\left]-\infty,t\right[})\qquad
\forall t\in\mathbf{R}
\end{equation}
and
\begin{equation}\label{alimo}
\hat v(t)=f(\hat u(t))\qquad\forall t\in\mathbf{R}.\end{equation}
Let $t\in\mathbf{R}$ be such that
$\abs{\wt{D}u}(\interval{\left[t,s\right[})>0$ for every $s>t$ and
assume that the limits in \eqref{joe} exist. By \eqref{j:mark} and
\eqref{far-d} we get
\begin{equation*}\begin{split}
\frac{\hat v(s)-\hat
v(t)}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}&=\frac {f(\hat
u(s))-f(\hat u(t))}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}\\
&=\frac{f(\hat u(s))-f(\hat
u(t)+\dfrac{\wt{D}u}{\abs{\wt{D}u}}(t)\abs{\wt{D}u
}(\interval{\left[t,s\right[}))}%
{\abs{\wt{D}u}(\interval{\left[t,s\right[})}\\
&+\frac
{f(\hat u(t)+\dfrac{\wt{D}u}{\abs{\wt{D}u}}(t)\abs{\wt{D}
u}(\interval{\left[t,s\right[}))-f(\hat
u(t))}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}
\end{split}\end{equation*}
for every $s>t$. Using the Lipschitz condition on $f$ we find
{\setlength{\multlinegap}{0pt}
\begin{multline*}
\left\lvert\frac{\hat v(s)-\hat
v(t)}{\abs{\wt{D}u}(\interval{\left[t,s\right[})} -\frac{f(\hat
u(t)+\dfrac{\wt{D}u}{\abs{\wt{D}u}}(t)
\abs{\wt{D}u}(\interval{\left[t,s\right[}))-f(\hat
u(t))}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}\right\rvert\\
\le K\left\lvert
\frac{\hat u(s)-\hat u(t)}
{\abs{\wt{D}u}(\interval{\left[t,s\right[})}
-\frac{\wt{D}u}{\abs{
\wt{D}u}}(t)\right\rvert.\end{multline*}
}% end of group with \multlinegap=0pt
By \eqref{e:bomb}, the function $s\to
\abs{\wt{D}u}(\interval{\left[t,s\right[})$ is continuous and
converges to 0 as $s\downarrow t$. Therefore Remark~\ref{r:omb} and the
previous inequality imply
\[\frac{\wt{D}v}{\abs{\wt{D}u}}(t)=\lim_{h\to 0^+}
\frac{f(\hat u(t)+h\dfrac{\wt{D}u}{\abs{\wt{D}u}}
(t))-f(\hat u(t))}h\quad\abs{\wt{D}u}\text{-a.e. in }\mathbf{R}.\]
By \eqref{joe}, $\hat u(x)=\tilde u(x)$ for every
$x\in\mathbf{R}\backslash S_u$; moreover, applying the same argument to
the functions $u'(t)=u(-t)$, $v'(t)=f(u'(t))=v(-t)$, we get
\[\frac{\wt{D}v}{\abs{\wt{D}u}}(t)=\lim_{h\to 0}
\frac{f(\tilde u(t)
+h\dfrac{\wt{D}u}{\abs{\wt{D}u}}(t))-f(\tilde u(t))}{h}
\qquad\abs{\wt{D}u}\text{-a.e. in }\mathbf{R}\]
and our statement is proved.
\subsection*{Step 2}
Let us consider now the general case $n>1$. Let $\nu\in \mathbf{R}^n$ be
such that $\abs{\nu}=1$, and let $\pi_\nu=\{y\in\mathbf{R}^n: \langle
y,\nu\rangle =0\}$. In the following, we shall identify $\mathbf{R}^n$
with $\pi_\nu\times\mathbf{R}$, and we shall denote by $y$ the variable
ranging in $\pi_\nu$ and by $t$ the variable ranging in $\mathbf{R}$. By
the just proven one-dimensional result, and by \thmref{thm-main}, we get
\[\lim_{h\to 0}\frac{f(\tilde u(y+t\nu)+h\dfrac{\wt{D}u_y}{\abs{
\wt{D}u_y}}(t))-f(\tilde u(y+t\nu))}h=\frac{\wt{D}v_y}{\abs{
\wt{D}u_y}}(t)\qquad\abs{\wt{D}u_y}\text{-a.e. in }\mathbf{R}\]
for $\mathcal{H}_{n-1}$-almost every $y\in \pi_\nu$. We claim that
\begin{equation}
\frac{\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle
}}(y+t\nu)=\frac{\wt{D}u_y}
{\abs{\wt{D}u_y}}(t)\qquad\abs{\wt{D}u_y}\text{-a.e. in }\mathbf{R}
\end{equation}
for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact, by
\eqref{sum-ali} and \eqref{delta-l} we get
\begin{multline*}
\int_{\pi_\nu}\frac{\wt{D}u_y}{\abs{\wt{D}u_y}}\cdot\abs{\wt{D}u_y
}\,d\mathcal{H}_{n-1}(y)=\int_{\pi_\nu}\wt{D}u_y\,d\mathcal{H}_{n-1}(y)\\
=\langle \wt{D}u,\nu\rangle =\frac
{\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle}}\cdot
\abs{\langle \wt{D}u,\nu\rangle }=\int_{\pi_\nu}\frac{
\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}
(y+\cdot \nu)\cdot\abs{\wt{D}u_y}\,d\mathcal{H}_{n-1}(y)
\end{multline*}
and \eqref{far-d} follows from \eqref{sum-Di}. By the same argument it
is possible to prove that
\begin{equation}
\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle
}}(y+t\nu)=\frac{\wt{D}v_y}{\abs{\wt{D}u_y}}(t)\qquad\abs{
\wt{D}u_y}\text{-a.e. in }\mathbf{R}\end{equation}
for $\mathcal{H}_{n-1}$-almost every $y\in \pi_\nu$. By \eqref{far-d}
and \eqref{E_SXgYy} we get
\[
\lim_{h\to 0}\frac{f(\tilde u(y+t\nu)+h\dfrac{\langle \wt{D}
u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(y+t\nu))-f(\tilde
u(y+t\nu))}{h}
=\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle
\wt{D}u,\nu\rangle }}(y+t\nu)\]
for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again
\eqref{detK1}, \eqref{detK2} we get
\[
\lim_{h\to 0}\frac{f(\tilde u(x)+h\dfrac{\langle
\wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(x))-f(\tilde
u(x))}{h}=\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle \wt{D}u,\nu
\rangle }}(x)
\]
$\abs{\langle \wt{D}u,\nu\rangle}$-a.e. in $\mathbf{R}^n$.
Since the function $\abs{\langle \wt{D}u,\nu\rangle }/\abs{\wt{D}u}$
is strictly positive $\abs{\langle \wt{D}u,\nu\rangle }$-almost everywhere,
we obtain also
\begin{multline*}
\lim_{h\to 0}\frac{f(\tilde u(x)+h\dfrac{\abs{\langle
\wt{D}u,\nu\rangle }}{\abs{\wt{D}u}}(x)\dfrac{\langle \wt{D}
u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(x))-f(\tilde u(x))}{h}\\
=\frac{\abs{\langle \wt{D}u,\nu\rangle }}{\abs{\wt{D}u}}(x)\frac
{\langle \wt{D}v,\nu\rangle }{\abs{\langle
\wt{D}u,\nu\rangle }}(x)
\end{multline*}
$\abs{\langle \wt{D}u,\nu\rangle }$-almost everywhere in $\mathbf{R}^n$.
Finally, since
\begin{align*}
&\frac{\abs{\langle \wt{D}u,\nu\rangle }}{\abs{\wt{D}u}}
\frac{\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle}}