forked from mikexcohen/AnalyzingNeuralTimeSeries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
laplacian_perrinX.m
128 lines (103 loc) · 3.09 KB
/
laplacian_perrinX.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
%LAPLACIAN_PERRINX Compute surface Laplacian of EEG data.
% [surf_lap,G,H] = laplacian_perrinX(data,x,y,z[,leg_order,smoothing]);
%
% INPUTS :
% data : EEG data (can be N-D, but first dimension must be electrodes)
% x,y,z : x,y,z coordinates of electrode positions (e.g., [EEG.chanlocs.X])
%
% (optional inputs)
% leg_order : order of Legendre polynomial (default is 20 [40 for >100 electrodes])
% smoothing : G smoothing parameter (lambda), set to 1e-5 by default
%
%
% OUTPUTS :
% surf_lap : the surface Laplacian (second spatial derivative)
% (optional outputs)
% G,H : G and H matrices
%
% This is an implementation of algorithms described by
% Perrin, Pernier, Bertrand, and Echallier (1989). PubMed #2464490
function [surf_lap,G,H] = laplacian_perrinX(data,x,y,z,varargin) % vararg order: leg_order,smoothing
numelectrodes = numel(x);
if nargin<4
help laplacian_perrinX
error('Read help file!')
end
%% compute G and H matrices
% initialize
G=zeros(numelectrodes);
H=zeros(numelectrodes);
cosdist=zeros(numelectrodes);
% default parameters for +/- 100 electrodes
if numelectrodes>100
m=3; leg_order=40;
else
m=4; leg_order=20;
end
if numel(varargin)>0 && ~isempty(varargin{1})
leg_order=varargin{1};
end
% scale XYZ coordinates to unit sphere
[junk,junk,spherical_radii] = cart2sph(x,y,z);
maxrad = max(spherical_radii);
x = x./maxrad;
y = y./maxrad;
z = z./maxrad;
for i=1:numelectrodes
for j=i+1:numelectrodes
cosdist(i,j) = 1 - (( (x(i)-x(j))^2 + (y(i)-y(j))^2 + (z(i)-z(j))^2 ) / 2 );
end
end
cosdist = cosdist+cosdist' + eye(numelectrodes);
% compute Legendre polynomial
legpoly = zeros(leg_order,numelectrodes,numelectrodes);
for ni=1:leg_order
temp = legendre(ni,cosdist);
legpoly(ni,:,:) = temp(1,:,:);
end
% precompute electrode-independent variables
twoN1 = 2*(1:leg_order)+1;
gdenom = ((1:leg_order).*((1:leg_order)+1)).^m;
hdenom = ((1:leg_order).*((1:leg_order)+1)).^(m-1);
for i=1:numelectrodes
for j=i:numelectrodes
g=0; h=0;
for ni=1:leg_order
% compute G and H terms
g = g + (twoN1(ni)*legpoly(ni,i,j)) / gdenom(ni);
h = h - (twoN1(ni)*legpoly(ni,i,j)) / hdenom(ni);
end
G(i,j) = g/(4*pi);
H(i,j) = -h/(4*pi);
end
end
% mirror matrix
G=G+G'; H=H+H';
% correct for diagonal-double
G = G-eye(numelectrodes)*G(1)/2;
H = H-eye(numelectrodes)*H(1)/2;
%% compute laplacian
% reshape data to electrodes X time/trials
orig_data_size = squeeze(size(data));
if any(orig_data_size==1)
data=data(:);
else
data = reshape(data,orig_data_size(1),prod(orig_data_size(2:end)));
end
% smoothing constant
if numel(varargin)==2
smoothing=varargin{2};
else
smoothing=1e-5;
end
% add smoothing constant to diagonal
% (change G so output is unadulterated)
Gs = G + eye(numelectrodes)*smoothing;
% compute C matrix
GsinvS = sum(inv(Gs));
dataGs = data'/Gs;
C = dataGs - (sum(dataGs,2)/sum(GsinvS))*GsinvS;
% compute surface Laplacian (and reshape to original data size)
surf_lap = reshape((C*H')',orig_data_size);
%% end