-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathallfitdist.m
449 lines (405 loc) · 13.5 KB
/
allfitdist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
function [D PD] = allfitdist(data,sortby,varargin)
%ALLFITDIST Fit all valid parametric probability distributions to data.
% [D PD] = ALLFITDIST(DATA) fits all valid parametric probability
% distributions to the data in vector DATA, and returns a struct D of
% fitted distributions and parameters and a struct of objects PD
% representing the fitted distributions. PD is an object in a class
% derived from the ProbDist class.
%
% [...] = ALLFITDIST(DATA,SORTBY) returns the struct of valid distributions
% sorted by the parameter SORTBY
% NLogL - Negative of the log likelihood
% BIC - Bayesian information criterion (default)
% AIC - Akaike information criterion
% AICc - AIC with a correction for finite sample sizes
%
% [...] = ALLFITDIST(...,'DISCRETE') specifies it is a discrete
% distribution and does not attempt to fit a continuous distribution
% to the data
%
% [...] = ALLFITDIST(...,'PDF') or (...,'CDF') plots either the PDF or CDF
% of a subset of the fitted distribution. The distributions are plotted in
% order of fit, according to SORTBY.
%
% List of distributions it will try to fit
% Continuous (default)
% Beta
% Birnbaum-Saunders
% Exponential
% Extreme value
% Gamma
% Generalized extreme value
% Generalized Pareto
% Inverse Gaussian
% Logistic
% Log-logistic
% Lognormal
% Nakagami
% Normal
% Rayleigh
% Rician
% t location-scale
% Weibull
%
% Discrete ('DISCRETE')
% Binomial
% Negative binomial
% Poisson
%
% Optional inputs:
% [...] = ALLFITDIST(...,'n',N,...)
% For the 'binomial' distribution only:
% 'n' A positive integer specifying the N parameter (number
% of trials). Not allowed for other distributions. If
% 'n' is not given it is estimate by Method of Moments.
% If the estimated 'n' is negative then the maximum
% value of data will be used as the estimated value.
% [...] = ALLFITDIST(...,'theta',THETA,...)
% For the 'generalized pareto' distribution only:
% 'theta' The value of the THETA (threshold) parameter for
% the generalized Pareto distribution. Not allowed for
% other distributions. If 'theta' is not given it is
% estimated by the minimum value of the data.
%
% Note: ALLFITDIST does not handle nonparametric kernel-smoothing,
% use FITDIST directly instead.
%
%
% EXAMPLE 1
% Given random data from an unknown continuous distribution, find the
% best distribution which fits that data, and plot the PDFs to compare
% graphically.
% data = normrnd(5,3,1e4,1); %Assumed from unknown distribution
% [D PD] = allfitdist(data,'PDF'); %Compute and plot results
% D(1) %Show output from best fit
%
% EXAMPLE 2
% Given random data from a discrete unknown distribution, with frequency
% data, find the best discrete distribution which would fit that data,
% sorted by 'NLogL', and plot the PDFs to compare graphically.
% data = nbinrnd(20,.3,1e4,1);
% values=unique(data); freq=histc(data,values);
% [D PD] = allfitdist(values,'NLogL','frequency',freq,'PDF','DISCRETE');
% PD{1}
%
% EXAMPLE 3
% Although the Geometric Distribution is not listed, it is a special
% case of fitting the more general Negative Binomial Distribution. The
% parameter 'r' should be close to 1. Show by example.
% data=geornd(.7,1e4,1); %Random from Geometric
% [D PD]= allfitdist(data,'PDF','DISCRETE');
% PD{1}
%
% EXAMPLE 4
% Compare the resulting distributions under two different assumptions
% of discrete data. The first, that it is known to be derived from a
% Binomial Distribution with known 'n'. The second, that it may be
% Binomial but 'n' is unknown and should be estimated. Note the second
% scenario may not yield a Binomial Distribution as the best fit, if
% 'n' is estimated incorrectly. (Best to run example a couple times
% to see effect)
% data = binornd(10,.3,1e2,1);
% [D1 PD1] = allfitdist(data,'n',10,'DISCRETE','PDF'); %Force binomial
% [D2 PD2] = allfitdist(data,'DISCRETE','PDF'); %May be binomial
% PD1{1}, PD2{1} %Compare distributions
%
% Mike Sheppard
% Last Modified: 17-Feb-2012
%% Check Inputs
if nargin == 0
data = 10.^((normrnd(2,10,1e4,1))/10);
sortby='BIC';
varargin={'CDF'};
end
if nargin==1
sortby='BIC';
end
sortbyname={'NLogL','BIC','AIC','AICc'};
if ~any(ismember(lower(sortby),lower(sortbyname)))
oldvar=sortby; %May be 'PDF' or 'CDF' or other commands
if isempty(varargin)
varargin={oldvar};
else
varargin=[oldvar varargin];
end
sortby='BIC';
end
if nargin < 2, sortby='BIC'; end
distname={'exponential','normal', 'poisson'};
if ~any(strcmpi(sortby,sortbyname))
error('allfitdist:SortBy','Sorting must be either NLogL, BIC, AIC, or AICc');
end
%Input may be mixed of numeric and strings, find only strings
vin=varargin;
strs=find(cellfun(@(vs)ischar(vs),vin));
vin(strs)=lower(vin(strs));
%Next check to see if 'PDF' or 'CDF' is listed
numplots=sum(ismember(vin(strs),{'pdf' 'cdf'}));
if numplots>=2
error('ALLFITDIST:PlotType','Either PDF or CDF must be given');
end
if numplots==1
plotind=true; %plot indicator
indxpdf=ismember(vin(strs),'pdf');
plotpdf=any(indxpdf);
indxcdf=ismember(vin(strs),'cdf');
vin(strs(indxpdf|indxcdf))=[]; %Delete 'PDF' and 'CDF' in vin
else
plotind=false;
end
%Check to see if discrete
strs=find(cellfun(@(vs)ischar(vs),vin));
indxdis=ismember(vin(strs),'discrete');
discind=false;
if any(indxdis)
discind=true;
distname={'poisson'};
vin(strs(indxdis))=[]; %Delete 'DISCRETE' in vin
end
strs=find(cellfun(@(vs)ischar(vs),vin));
n=numel(data); %Number of data points
data = data(:);
D=[];
%Check for NaN's to delete
deldatanan=isnan(data);
%Check to see if frequency is given
indxf=ismember(vin(strs),'frequency');
if any(indxf)
freq=vin{1+strs((indxf))}; freq=freq(:);
if numel(freq)~=numel(data)
error('ALLFITDIST:PlotType','Matrix dimensions must agree');
end
delfnan=isnan(freq);
data(deldatanan|delfnan)=[]; freq(deldatanan|delfnan)=[];
%Save back into vin
vin{1+strs((indxf))}=freq;
else
data(deldatanan)=[];
end
%% Run through all distributions in FITDIST function
warning('off','all'); %Turn off all future warnings
for indx=1:length(distname)
try
dname=distname{indx};
switch dname
case 'binomial'
PD=fitbinocase(data,vin,strs); %Special case
case 'generalized pareto'
PD=fitgpcase(data,vin,strs); %Special case
otherwise
%Built-in distribution using FITDIST
PD = fitdist(data,dname,vin{:});
end
NLL=PD.NLogL; % -Log(L)
%If NLL is non-finite number, produce error to ignore distribution
if ~isfinite(NLL)
error('non-finite NLL');
end
num=length(D)+1;
PDs(num) = {PD}; %#ok<*AGROW>
k=numel(PD.Params); %Number of parameters
D(num).DistName=PD.DistName;
D(num).NLogL=NLL;
D(num).BIC=-2*(-NLL)+k*log(n);
D(num).AIC=-2*(-NLL)+2*k;
D(num).AICc=(D(num).AIC)+((2*k*(k+1))/(n-k-1));
D(num).ParamNames=PD.ParamNames;
D(num).ParamDescription=PD.ParamDescription;
D(num).Params=PD.Params;
D(num).Paramci=PD.paramci;
D(num).ParamCov=PD.ParamCov;
D(num).Support=PD.Support;
catch err %#ok<NASGU>
%Ignore distribution
end
end
warning('on','all'); %Turn back on warnings
if numel(D)==0
error('ALLFITDIST:NoDist','No distributions were found');
end
%% Sort distributions
indx1=1:length(D); %Identity Map
sortbyindx=find(strcmpi(sortby,sortbyname));
switch sortbyindx
case 1
[~,indx1]=sort([D.NLogL]);
case 2
[~,indx1]=sort([D.BIC]);
case 3
[~,indx1]=sort([D.AIC]);
case 4
[~,indx1]=sort([D.AICc]);
end
%Sort
D=D(indx1); PD = PDs(indx1);
%% Plot if requested
if plotind;
plotfigs(data,D,PD,vin,strs,plotpdf,discind)
end
end
function PD=fitbinocase(data,vin,strs)
%% Special Case for Binomial
% 'n' is estimated if not given
vinbino=vin;
%Check to see if 'n' is given
indxn=any(ismember(vin(strs),'n'));
%Check to see if 'frequency' is given
indxfreq=ismember(vin(strs),'frequency');
if ~indxn
%Use Method of Moment estimator
%E[x]=np, V[x]=np(1-p) -> nhat=E/(1-(V/E));
if isempty(indxfreq)||~any(indxfreq)
%Raw data
mnx=mean(data);
nhat=round(mnx/(1-(var(data)/mnx)));
else
%Frequency data
freq=vin{1+strs(indxfreq)};
m1=dot(data,freq)/sum(freq);
m2=dot(data.^2,freq)/sum(freq);
mnx=m1; vx=m2-(m1^2);
nhat=round(mnx/(1-(vx/mnx)));
end
%If nhat is negative, use maximum value of data
if nhat<=0, nhat=max(data(:)); end
vinbino{end+1}='n'; vinbino{end+1}=nhat;
end
PD = fitdist(data,'binomial',vinbino{:});
end
function PD=fitgpcase(data,vin,strs)
%% Special Case for Generalized Pareto
% 'theta' is estimated if not given
vingp=vin;
%Check to see if 'theta' is given
indxtheta=any(ismember(vin(strs),'theta'));
if ~indxtheta
%Use minimum value for theta, minus small part
thetahat=min(data(:))-10*eps;
vingp{end+1}='theta'; vingp{end+1}=thetahat;
end
PD = fitdist(data,'generalized pareto',vingp{:});
end
function plotfigs(data,D,PD,vin,strs,plotpdf,discind)
%Plot functionality for continuous case due to Jonathan Sullivan
%Modified by author for discrete case
%Maximum number of distributions to include
%max_num_dist=Inf; %All valid distributions
max_num_dist=4;
%Check to see if frequency is given
indxf=ismember(vin(strs),'frequency');
if any(indxf)
freq=vin{1+strs((indxf))};
end
figure
%% Probability Density / Mass Plot
if plotpdf
if ~discind
%Continuous Data
nbins = max(min(length(data)./10,100),50);
xi = linspace(min(data),max(data),nbins);
dx = mean(diff(xi));
xi2 = linspace(min(data),max(data),nbins*10)';
fi = histc(data,xi-dx);
fi = fi./sum(fi)./dx;
inds = 1:min([max_num_dist,numel(PD)]);
ys = cellfun(@(PD) pdf(PD,xi2),PD(inds),'UniformOutput',0);
ys = cat(2,ys{:});
bar(xi,fi,'FaceColor',[160 188 254]/255,'EdgeColor','k');
hold on;
plot(xi2,ys,'LineWidth',1.5)
legend(['empirical',{D(inds).DistName}],'Location','NE')
xlabel('Value');
ylabel('Probability Density');
title('Probability Density Function');
grid on
else
%Discrete Data
xi2=min(data):max(data);
%xi2=unique(x)'; %If only want observed x-values to be shown
indxf=ismember(vin(strs),'frequency');
if any(indxf)
fi=zeros(size(xi2));
fi((ismember(xi2,data)))=freq; fi=fi'./sum(fi);
else
fi=histc(data,xi2); fi=fi./sum(fi);
end
inds = 1:min([max_num_dist,numel(PD)]);
ys = cellfun(@(PD) pdf(PD,xi2),PD(inds),'UniformOutput',0);
ys=cat(1,ys{:})';
bar(xi2,[fi ys]);
legend(['empirical',{D(inds).DistName}],'Location','NE')
xlabel('Value');
ylabel('Probability Mass');
title('Probability Mass Function');
grid on
end
else
%Cumulative Distribution
if ~discind
%Continuous Data
[fi xi] = ecdf(data);
inds = 1:min([max_num_dist,numel(PD)]);
ys = cellfun(@(PD) cdf(PD,xi),PD(inds),'UniformOutput',0);
ys = cat(2,ys{:});
if max(xi)/min(xi) > 1e4; lgx = true; else lgx = false; end
subplot(2,1,1)
if lgx
semilogx(xi,fi,'k',xi,ys)
else
plot(xi,fi,'k',xi,ys)
end
legend(['empirical',{D(inds).DistName}],'Location','NE')
xlabel('Value');
ylabel('Cumulative Probability');
title('Cumulative Distribution Function');
grid on
subplot(2,1,2)
y = 1.1*bsxfun(@minus,ys,fi);
if lgx
semilogx(xi,bsxfun(@minus,ys,fi))
else
plot(xi,bsxfun(@minus,ys,fi))
end
ybnds = max(abs(y(:)));
ax = axis;
axis([ax(1:2) -ybnds ybnds]);
legend({D(inds).DistName},'Location','NE')
xlabel('Value');
ylabel('Error');
title('CDF Error');
grid on
else
%Discrete Data
indxf=ismember(vin(strs),'frequency');
if any(indxf)
[fi xi] = ecdf(data,'frequency',freq);
else
[fi xi] = ecdf(data);
end
%Check unique xi, combine fi
[xi,ign,indx]=unique(xi); %#ok<ASGLU>
fi=accumarray(indx,fi);
inds = 1:min([max_num_dist,numel(PD)]);
ys = cellfun(@(PD) cdf(PD,xi),PD(inds),'UniformOutput',0);
ys=cat(2,ys{:});
subplot(2,1,1)
stairs(xi,[fi ys]);
legend(['empirical',{D(inds).DistName}],'Location','NE')
xlabel('Value');
ylabel('Cumulative Probability');
title('Cumulative Distribution Function');
grid on
subplot(2,1,2)
y = 1.1*bsxfun(@minus,ys,fi);
stairs(xi,bsxfun(@minus,ys,fi))
ybnds = max(abs(y(:)));
ax = axis;
axis([ax(1:2) -ybnds ybnds]);
legend({D(inds).DistName},'Location','NE')
xlabel('Value');
ylabel('Error');
title('CDF Error');
grid on
end
end
end