-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_nli.py
706 lines (589 loc) · 35.5 KB
/
run_nli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Modifications copyright (c) 2020 Sawan Kumar
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
#
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import random
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME,
RobertaConfig,
RobertaForSequenceClassification,
RobertaTokenizer)
from transformers import (BertConfig,
BertForSequenceClassification,
BertTokenizer)
from transformers import AdamW, get_linear_schedule_with_warmup
from example_to_feature import convert_examples_to_features as convert_examples_to_features
from utils import ExpProcessor
from utils import exp_compute_metrics as compute_metrics
#from lm_utils import NLIDataset, CoQADataset
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (RobertaConfig,)), ())
MODEL_CLASSES = {
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_logits(batch, model_output, exp_model):
if exp_model in ["instance", "append", "instance_append", "all_explanation", "Explanation_1", "hyp_only"]:
return model_output
model_output = model_output.view(batch[0].size(0), batch[0].size(1), model_output.size(1))
e,c,n = 0,1,2
v1,v2 = 0,1
if exp_model in ["independent", "instance_independent"]:
evidence_e = [model_output[:, e, v1]]
evidence_c = [model_output[:, c, v1]]
evidence_n = [model_output[:, n, v1]]
elif exp_model in ["aggregate", "instance_aggregate"]:
evidence_e = [model_output[:, e, v1], model_output[:, c, v2]]
evidence_c = [model_output[:, e, v2], model_output[:, c, v1]]
evidence_n = [model_output[:, n, v1]]
logits_e, logits_c, logits_n = [torch.cat([evd.unsqueeze(-1) for evd in item], 1)
for item in [evidence_e, evidence_c, evidence_n]]
logits_e, logits_c, logits_n = [torch.logsumexp(item, 1, keepdim=True) for item in [logits_e, logits_c, logits_n]]
logits = torch.cat([logits_e, logits_c, logits_n], 1)
return logits
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
erm_loss, logging_erm_loss, con_loss, logging_con_loss = 0.0, 0.0, 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
best_result = None
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
# Remove dummy examples
if args.contrast:
input_ids = batch[0].view(-1, batch[0].size(-1))
attention_mask = batch[1].view(-1, batch[0].size(-1))
labels = batch[3].view(-1)
dummy_mask = (torch.sum(input_ids, dim=-1) > 0).long().to(args.device)
input_ids = input_ids[torch.nonzero(dummy_mask, as_tuple=True)[0],:].long()
attention_mask = attention_mask[torch.nonzero(dummy_mask, as_tuple=True)[0],:].long()
labels = labels[torch.nonzero(dummy_mask, as_tuple=True)[0]].long()
indices = batch[4].view(-1)[torch.nonzero(dummy_mask, as_tuple=True)[0]].long()
else:
input_ids = batch[0].view(-1, batch[0].size(-1))
attention_mask = batch[1].view(-1, batch[0].size(-1))
token_type_ids = batch[2].view(-1, batch[0].size(-1))
inputs = {'input_ids': input_ids,
'attention_mask': attention_mask}
if args.model_type == 'roberta':
inputs['token_type_ids'] = None
elif args.model_type == 'bert':
inputs['token_type_ids'] = token_type_ids
inputs['token_type_ids'] = None
outputs = model(**inputs)
model_output = outputs[0]
if args.contrast:
# Weighted Cross Entropy
# loss_fct = nn.NLLLoss()
# logits = get_logits(batch, model_output, args.exp_model)
# log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
# target = batch[3].view(-1)
# pred = torch.argmax(logits, dim=-1)
# correct = (target == pred).long()
# consistent = torch.tensor([torch.sum(x)/5.0 for x in torch.split(correct, int(correct.shape[0]/batch[3].shape[0]))])
# consistent[consistent == 0.0] = 1.0
# inverse_weights = torch.repeat_interleave(1.0 / consistent, 5).to(args.device)
# per_example_weight = torch.ones_like(pred).float().to(args.device)
# per_example_weight = torch.where(correct == 0, inverse_weights, per_example_weight)
# loss = loss_fct(log_probs * per_example_weight.unsqueeze(-1), target)
# Pairwise consistency (also includes mse with original, which is always zero)
loss_fct = nn.CrossEntropyLoss()
logits = get_logits(batch, model_output, args.exp_model)
ce_loss = loss_fct(logits, labels)
alpha = 10.0
consistency_regularizer = nn.MSELoss()
log_probs = nn.functional.log_softmax(logits, dim=-1)
log_probs = torch.gather(log_probs, dim=-1, index=labels.view(-1,1)).squeeze(-1)
# Only use regularization when pairs are available
index_mask = (indices < 8330).long().to(args.device)
log_probs = log_probs[torch.nonzero(index_mask, as_tuple=True)[0]]
orig_log_probs = torch.repeat_interleave(log_probs[::5], 5).to(args.device)
if torch.sum(index_mask) > 0:
consistency_loss = consistency_regularizer(log_probs, orig_log_probs)
else:
consistency_loss = torch.tensor(0.0)
loss = ce_loss + (alpha * consistency_loss)
erm_loss += ce_loss.item()
con_loss += consistency_loss.item()
else:
loss_fct = nn.CrossEntropyLoss()
logits = get_logits(batch, model_output, args.exp_model)
loss = loss_fct(logits, batch[3])
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
if args.contrast:
tb_writer.add_scalar('erm_loss', (erm_loss - logging_erm_loss)/args.logging_steps, global_step)
tb_writer.add_scalar('con_loss', (con_loss - logging_con_loss)/args.logging_steps, global_step)
logging_erm_loss = erm_loss
logging_con_loss = con_loss
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
#Save and evaluate after every epoch
if args.save_every_epoch:
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(epoch))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
results = evaluate(args, model, tokenizer, prefix="", analyze_attentions=False, eval_on_train=False, epoch=str(epoch))
if best_result is None:
best_result = results
best_result["ckpt"] = epoch
if best_result["acc"] < results["acc"]:
best_result["ckpt"] = epoch
best_result["acc"] = results["acc"]
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
if best_result is not None:
src_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(best_result["ckpt"]))
tgt_dir = os.path.join(args.output_dir, 'best-checkpoint')
shutil.copytree(src_dir, tgt_dir)
logger.info("Saving best model checkpoint from %s to %s", src_dir, tgt_dir)
return global_step, tr_loss / global_step
def is_two_class(data_dir):
if 'hans' in data_dir:
return True
else:
return False
def evaluate(args, model, tokenizer, prefix="", analyze_attentions=False, eval_on_train=False, epoch=''):
processor = ExpProcessor()
eval_output_dir = args.output_dir
results = {}
eval_dataset, indices = load_and_cache_examples(args, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
attentions = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0].view(-1, batch[0].size(-1)),
'attention_mask': batch[1].view(-1, batch[0].size(-1))}
inputs['token_type_ids'] = None
outputs = model(**inputs)
model_output = outputs[0]
loss_fct = nn.CrossEntropyLoss()
logits = get_logits(batch, model_output, args.exp_model)
tmp_eval_loss = loss_fct(logits, batch[3])
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
inputs['labels'] = batch[3]
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds_ = preds
preds = np.argmax(preds, axis=1)
result = compute_metrics(preds, out_label_ids, is_two_class(args.eval_file))
results.update(result)
if not eval_on_train:
eval_dataset = os.path.basename(os.path.dirname(args.eval_file)).split('_')[1]
eval_file_base = os.path.splitext(os.path.basename(args.eval_file))[0]
to_drop_list = args.to_drop.split(',') if evaluate else []
to_drop_str = '_drop'+''.join(to_drop_list) if args.to_drop else ''
epoch_str = '_' + epoch if epoch != '' else ''
prediction_file = os.path.join(args.output_dir, 'predictions_{}_{}_{}_{}{}{}.npz'.format(
eval_dataset,
eval_file_base,
str(args.max_seq_length),
str(args.data_format),
to_drop_str,
epoch_str))
print ("Writing predictions to ", prediction_file)
np.savez_compressed(prediction_file, dist=preds_, preds=preds, indices=indices, labels=out_label_ids)
output_eval_file = os.path.join(eval_output_dir, "eval_results_{}_{}{}.txt".format(
eval_dataset,
eval_file_base,
epoch_str))
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
filename = args.train_file if not evaluate else args.eval_file
data_dir, filename_base = os.path.split(filename)
two_class = is_two_class(data_dir)
processor = ExpProcessor(two_class)
if args.data_format == "aggregate": data_storage_format = "independent"
elif args.data_format == "instance_aggregate": data_storage_format = "instance_independent"
else: data_storage_format = args.data_format
to_drop_list = args.to_drop.split(',') if evaluate else []
cached_features_file = os.path.join(data_dir, 'cached_seq{}_{}_{}_{}_{}'.format(
str(args.max_seq_length),
filename_base,
data_storage_format,
'drop'+args.to_drop if args.to_drop and evaluate else '',
'_negs' if args.sample_negs and not evaluate else ''
))
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
examples, features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", data_dir)
label_list = processor.get_labels()
fn = processor.get_dev_examples if evaluate else processor.get_train_examples
examples = fn(filename, data_format=data_storage_format, to_drop=to_drop_list)
features = convert_examples_to_features(examples,
tokenizer,
label_list=label_list,
max_length=args.max_seq_length,
pad_on_left=False,
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=0)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save((examples, features), cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
features = features
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
indices = [example.guid for example in examples]
# Group data for contrast sets
# Assumption - size of each set is 5
if args.contrast and not evaluate:
total_size = all_input_ids.shape[0]
num_contrast_sets = int(total_size/5)
# Add dummy data points if total size is not mod 5
if len(all_labels) % 5 != 0:
extra = 5 - len(all_labels) % 5
all_input_ids = torch.cat((all_input_ids, torch.zeros(extra, all_input_ids.shape[-1])), dim=0)
all_attention_mask = torch.cat((all_attention_mask, torch.zeros(extra, all_attention_mask[-1].shape[-1])), dim=0)
all_token_type_ids = torch.cat((all_token_type_ids, torch.zeros(extra, all_token_type_ids[-1].shape[-1])), dim=0)
all_labels = torch.cat((all_labels, torch.zeros(extra)), dim=0)
indices.extend([len(indices) + x for x in range(extra)])
all_input_ids = all_input_ids.view(-1,5, all_input_ids.shape[-1])
all_attention_mask = all_attention_mask.view(-1,5,all_attention_mask.shape[-1])
all_token_type_ids = all_token_type_ids.view(-1,5,all_token_type_ids.shape[-1])
all_labels = all_labels.view(-1,5)
indices = torch.tensor(indices, dtype=torch.long).view(-1,5)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels, indices)
else:
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
return dataset, indices
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_file", default=None, type=str, required=True,
help="The input train file. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--eval_file", default=None, type=str, required=True,
help="The input eval file. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--exp_model", default="instance", type=str)
parser.add_argument("--data_format", default="instance", type=str)
parser.add_argument("--to_drop", default="", type=str) #comma-sep list
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--prompt_type", default="none", type=str,
help="Prompt given before explanation")
parser.add_argument("--use_annotations", action='store_true',
help="Whether to use annotations instead of generated explanations")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--sample_negs', action='store_true',
help='sample negative conjectures')
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
parser.add_argument('--contrast', action='store_true',
help='use contrast sets based training')
parser.add_argument('--save_every_epoch', action='store_true',
help='store model weights after every epoch')
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
processor = ExpProcessor()
label_list = processor.get_labels()
num_labels = len(label_list)
if args.exp_model in ["independent", "instance_independent"]: args.model_num_outputs = 1
elif args.exp_model in ["aggregate", "instance_aggregate"]: args.model_num_outputs = 2
else: args.model_num_outputs = 3
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=args.model_num_outputs,
cache_dir=args.cache_dir if args.cache_dir else None)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.do_train:
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
model.to(args.device)
train_dataset, indices = load_and_cache_examples(args, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.output_hidden_states = True
model.output_attentions = True
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step, analyze_attentions=True)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
print (results)
return results
if __name__ == "__main__":
main()