-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrbmtrain.m
68 lines (58 loc) · 2.3 KB
/
rbmtrain.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
function rbm = rbmtrain(rbm, x, opts)
%% Setup
nExamples = size(x,2);
nBatches = nExamples / opts.nBatchSize;
deltaW = zeros(size(rbm.W));
deltaA = zeros(size(rbm.a));
deltaB = zeros(size(rbm.b));
%% Train
for epoch = 1:opts.nEpochs
kk = randperm(nExamples);
err = 0;
tic
for j = 1:nBatches
batch = x(:, kk( (j-1) * opts.nBatchSize + 1 : j * opts.nBatchSize));
% Visible states 0, Data (784 x nBatchSize)
v0 = batch;
% Hidden states 0 (100 x nBatchSize))
if strcmp(rbm.hiddenUnits, 'linear')
p_h0 = rbm.W * v0 + repmat(rbm.b, 1, opts.nBatchSize);
h0 = p_h0 + randn(size(rbm.b,1), opts.nBatchSize);
else
p_h0 = sigmoid(rbm.W * v0 + repmat(rbm.b, 1, opts.nBatchSize));
h0 = p_h0 > rand(size(p_h0));
end
% Reconstruction 1 (784 x nBatchSize)
if isfield(rbm, 'visibleUnits') && strcmp(rbm.visibleUnits, 'linear')
p_v1 = rbm.W' * h0 + repmat(rbm.a, 1, opts.nBatchSize);
v1 = p_v1 + randn(size(rbm.a,1), opts.nBatchSize);
else
v1 = sigmoid(rbm.W'*h0 + repmat(rbm.a, 1, opts.nBatchSize));
end
% Hidden state 1 (100 x nBatchSize)
if strcmp(rbm.hiddenUnits, 'linear')
p_h1 = rbm.W * v1 + repmat(rbm.b, 1, opts.nBatchSize);
else
p_h1 = sigmoid(rbm.W*v1 + repmat(rbm.b, 1, opts.nBatchSize, 1));
end
deltaW = rbm.learningRate * ( ...
(p_h0*v0' - p_h1*v1')/ opts.nBatchSize - opts.l2 * rbm.W ...
) + opts.momentum * deltaW;
deltaA = rbm.learningRate * (sum(v0 - v1, 2) / opts.nBatchSize) ...
+ opts.momentum * deltaA;
deltaB = rbm.learningRate * (sum(p_h0 - p_h1, 2) / opts.nBatchSize) ...
+ opts.momentum * deltaB;
rbm.W = rbm.W + deltaW;
rbm.a = rbm.a + deltaA;
rbm.b = rbm.b + deltaB;
err = err + sum(sum((v1 - v0).^2)) / opts.nBatchSize;
end
toc
fprintf('Epoch %d/%d. Reconstruction error %f (last deltaW %f)\n',...
epoch, opts.nEpochs, err/nBatches, sum(sum(abs(deltaW))));
if mod(epoch, 1) == 0
visualiseweights(rbm.W);
visualisereconstruction(v0(:,1), v1(:,1));
pause(0.5);
end
end