-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMappe1.twb
486 lines (485 loc) · 32.7 KB
/
Mappe1.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20191.19.0321.1733 -->
<workbook original-version='18.1' source-build='2019.1.2 (20191.19.0321.1733)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='Sheet1 (Aphrodite_Prices_appended)' inline='true' name='federated.1mtneye1y7qpgb16v1cg70s5k724' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='NewYork_Prices_appended' name='excel-direct.0hz8g7y0ug467n1f0niaq05ifyc5'>
<connection class='excel-direct' cleaning='yes' compat='no' dataRefreshTime='' filename='/Users/TobiasRordorf/Desktop/UNI/MBI HSG/4. Semester/Python/GitHub/hotelierchallenge/scrapers/TA/scrapes/1. Run/Excel_per_Hotel /NewYork_Prices_appended.xlsx' interpretationMode='1' password='' server='' validate='no' />
</named-connection>
</named-connections>
<relation connection='excel-direct.0hz8g7y0ug467n1f0niaq05ifyc5' name='Sheet1' table='[Sheet1$]' type='table'>
<columns gridOrigin='A1:C314:no:A1:C314:1' header='no' lost='0' outcome='1' processed='626'>
<column datatype='integer' name='F1' ordinal='0' />
<column datatype='real' name='price_per_night' ordinal='1' />
<column datatype='datetime' date-parse-format='yyyy-MM-dd HHZ' name='Datum' ordinal='2' />
</columns>
</relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Sheet1]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='context'>7</attribute>
<attribute datatype='string' name='gridOrigin'>"A1:C314:no:A1:C314:1"</attribute>
<attribute datatype='integer' name='lost'>0</attribute>
<attribute datatype='integer' name='outcome'>1</attribute>
<attribute datatype='integer' name='processed'>626</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>F1</remote-name>
<remote-type>20</remote-type>
<local-name>[F1]</local-name>
<parent-name>[Sheet1]</parent-name>
<remote-alias>F1</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"I8"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>price_per_night</remote-name>
<remote-type>5</remote-type>
<local-name>[price_per_night]</local-name>
<parent-name>[Sheet1]</parent-name>
<remote-alias>price_per_night</remote-alias>
<ordinal>1</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<precision>15</precision>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"R8"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Datum</remote-name>
<remote-type>7</remote-type>
<local-name>[Datum]</local-name>
<parent-name>[Sheet1]</parent-name>
<remote-alias>Datum</remote-alias>
<ordinal>2</ordinal>
<local-type>datetime</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LDE_RCH_S2' />
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column caption='Price Per Night' datatype='real' name='[price_per_night]' role='dimension' type='ordinal' />
<layout dim-ordering='alphabetic' dim-percentage='0.500907' measure-ordering='alphabetic' measure-percentage='0.499093' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"Schweiz"' />
</semantic-values>
<date-options start-of-week='monday' />
</datasource>
</datasources>
<worksheets>
<worksheet name='Blatt 1'>
<table>
<view>
<datasources>
<datasource caption='Sheet1 (Aphrodite_Prices_appended)' name='federated.1mtneye1y7qpgb16v1cg70s5k724' />
</datasources>
<datasource-dependencies datasource='federated.1mtneye1y7qpgb16v1cg70s5k724'>
<column datatype='datetime' name='[Datum]' role='dimension' type='ordinal' />
<column-instance column='[price_per_night]' derivation='CountD' name='[ctd:price_per_night:qk]' pivot='key' type='quantitative' />
<column-instance column='[Datum]' derivation='None' name='[none:Datum:qk]' pivot='key' type='quantitative' />
<column-instance column='[price_per_night]' derivation='None' name='[none:price_per_night:ok]' pivot='key' type='ordinal' />
<column-instance column='[price_per_night]' derivation='None' name='[none:price_per_night:qk]' pivot='key' type='quantitative' />
<column caption='Price Per Night' datatype='real' name='[price_per_night]' role='dimension' type='ordinal' />
</datasource-dependencies>
<filter class='categorical' column='[federated.1mtneye1y7qpgb16v1cg70s5k724].[:Measure Names]'>
<groupfilter function='level-members' level='[:Measure Names]' />
</filter>
<filter class='categorical' column='[federated.1mtneye1y7qpgb16v1cg70s5k724].[none:price_per_night:ok]'>
<groupfilter from='0.0' function='range' level='[none:price_per_night:ok]' to='400.0' user:ui-domain='relevant' user:ui-enumeration='inclusive' user:ui-marker='enumerate' />
</filter>
<slices>
<column>[federated.1mtneye1y7qpgb16v1cg70s5k724].[:Measure Names]</column>
<column>[federated.1mtneye1y7qpgb16v1cg70s5k724].[none:price_per_night:ok]</column>
</slices>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.1mtneye1y7qpgb16v1cg70s5k724].[none:Datum:qk]' field-type='quantitative' max='#2019-04-13 23:59:08#' min='#2019-04-03 20:44:51.102#' range-type='fixed' scope='cols' type='space' />
<encoding attr='space' class='0' field='[federated.1mtneye1y7qpgb16v1cg70s5k724].[none:price_per_night:qk]' field-type='quantitative' max='360.0' min='220.0' range-type='fixed' scope='rows' type='space' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.1mtneye1y7qpgb16v1cg70s5k724].[ctd:price_per_night:qk]' />
</encodings>
<trendline enable-confidence-bands='false' enable-instant-analytics='true' enabled='true' exclude-color='false' exclude-intercept='false' fit='linear' />
</pane>
</panes>
<rows>[federated.1mtneye1y7qpgb16v1cg70s5k724].[none:price_per_night:qk]</rows>
<cols>[federated.1mtneye1y7qpgb16v1cg70s5k724].[none:Datum:qk]</cols>
</table>
<simple-id uuid='{88546A81-5249-4D03-A399-B9784AAFD5F4}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Blatt 1'>
<cards>
<edge name='left'>
<strip size='193'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='100'>
<card pane-specification-id='0' param='[federated.1mtneye1y7qpgb16v1cg70s5k724].[ctd:price_per_night:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1mtneye1y7qpgb16v1cg70s5k724].[ctd:price_per_night:qk]</field>
<field>[federated.1mtneye1y7qpgb16v1cg70s5k724].[none:Datum:nk]</field>
<field>[federated.1mtneye1y7qpgb16v1cg70s5k724].[none:price_per_night:nk]</field>
<field>[federated.1mtneye1y7qpgb16v1cg70s5k724].[tdy:Datum:qk]</field>
<field>[federated.1mtneye1y7qpgb16v1cg70s5k724].[yr:Datum:ok]</field>
</color-one-way>
</highlight>
<default-map-tool-selection tool='8' />
</viewpoint>
<simple-id uuid='{5D8139F4-4AE0-4A7F-87ED-847A20C94CDF}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Blatt 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO3deXgUVaI//G919ZbOQhYgC4FA2MImO4iggDouKDoKXBVRwQVxeXTudXSu
d/y97zx3GR+fuXecUcSNGQVfRBHwZdSLiGyyIwQESYCEJZCErGTtvarO749OVxKTQNbOUt/P
I09Md3XXqXR3ffucU+ccSQghQEREhmPq7AIQEVHnYAAQERkUA4CIyKAYAEREBmXu7AK0lKZp
qNtvzT5sIqLW6XYBIEkSJEkCEDj5CyFgMrEiQ0TUUt0yAH75OwOAiKjlQh4AqqriwoULKCgo
QGxsLIYNGwZZlqGqKjIzM1FeXo7BgwcjMTERfr8fJ06cAACMGjUKNpst1MUlIuqxQv7V+dy5
c9i3bx8kScKBAwewefNmCCGwfv16nDhxArIsIysrC0IIbNiwAdnZ2Th37hy++OKLUBeViKhH
C3kNYMiQIRgyZAgkSUJsbCwOHTqEqqoqFBQU4Pnnn4csywAARVGQk5ODl156CQDwzjvvoKqq
CpGRkaEuMhFRjxTyAJAkCUeOHMFPP/2EgoICLFmyBEVFRaioqMCHH34In8+HKVOmIC0tDTEx
MZBlGZIkoXfv3gwAIqJ21CmdwCkpKbBYLEhPT8dPP/2EIUOGYMCAAZg/fz48Hg/+/ve/IzU1
Faqq6o9RVZWdvURE7SjkAeDz+RAbG4u4uDj0798fq1atwg033ICSkhLY7XaEhYUhLCwMNpsN
5eXl8Hg8AIDi4mJER0eHurhERD1WyAPgwIED+PHHHxEfH4/CwkJMmDABkZGRGDFiBJYvXw67
3Y74+HhERUXhhhtuwPLlyyHLMq677jrY7fZQF5eIqMeSQj0dtBACbrcb1dXVCA8Ph8PhgCRJ
EEKgvLwciqIgLi4OJpMJQghUVlZC0zRER0c3GAMghICmaXrHMRERNV/IA6A9MQCIiFqPvapE
RAbFACAiMigGABGRQTEAiIgMigFARGRQDAAiIoNiABARGRQDgIjIoBgAREQGxQAgIjIoBgAR
kUExAIiIDIoBQERkUJ2yIhg1tO/4OfzrO5tCsq/42Eh88fqTIdkXEXVdDIAuwudXUFrhDMm+
rBZOn01EbAIiIjIsBgARkUExAIiIDIoBQERkUAwAIiKDYgAQERkUA4CIyKAYAEREBsUAICIy
KAYAEZFBcSoIarOKajde+uvGZm07bcwgPHHPDR1coqat33YU3x7IaNa2/88Td2JAQiwAIOtS
Ed5YvbVZj7vnputwz41jWl1Go1r3fTq+O5jZrG3/3yfnoH98TAeXqOdjAFCb+RQV+0+cb9a2
vaMjOrg0V5dTcKXZZXV6fPr/Vzm9zX7chOH9W1U2o2vJa+Oq89pQ67EJiIjIoBgAREQGxQAg
IjIoBgARkUExAIiIDIoBQERkUAwAIiKDCuk4ACEECgoKcP78eVgsFowcORLh4eH6fefOnYPd
bke/fv0ghEBWVhaKioowcuRIxMbGhrKoREQ9XkhrAG63G5s3b4YQAiUlJVi5ciUURQEAFBQU
YOXKlTh48CAA4KeffsLmzZuhKAr+9re/wekMzYLpRERGEdIaQFhYGJYsWQJJkuB0OnHy5Eko
igJJkrB+/XrceeedKC0thRAC+/fvx8KFC9G7d29UVFQgKysL48aNC2VxiYh6tJAGgCRJyM3N
xc6dO3H27FnMmTMHNpsNP/zwAwYOHIjk5GSUlpZCVVW43W707t0bkiQhKSkJZWVlAAC/3w9V
VfXn1DQtlIfQYby+0A1tF0LA5XK12/N53O5mb6uqSrvuu6UUxd/sbT0ej15Wr9fT7Mf5FX+n
HmN3FWwNaI66rw21XsjnAoqNjcXUqVMRHR2No0ePIjk5Gdu2bcO8efNw4cIFFBcXo7i4GEDg
RCVJElRVhSzLAACLxQKLxaLfr2mafl93ZrNaQ7YvSZLgcDja7fmcvuaHsCyb23XfLWU2W5q9
rd1u18tqs9mb/TiL2dKpx9hdmc3NPx3VfW2o9ULaBxA8kQ8ZMgRz5syB3+9HRUUFZs2ahdLS
UpSUlMDlcsHlciEuLg5nz57VO4MTEhJCWVQioh4vpDWAgoICfPLJJ4iPj4fL5UJ4eDgGDx6M
tLQ0AMC5c+fw008/YfDgwbDZbPj4448RGxsLi8WCQYMGhbKoREQ9XkgDICkpCS+99BKqqqpg
NpsREREBk6m2EjJw4ECkpKQAAPr164ff/va3cDqdiI6O7hHNPEREXUnIO4EtFkuT1/TXDQNJ
kmC322G3N7/tlYiImo8jgYmIDIoBQERkUAwAIiKDYgAQERkUA4CIyKAYAEREBsUAICIyKAYA
EZFBMQCIiAyKAUBEZFAMACIig2IAEBEZFAOAiMigGABERAbFACAiMigGABGRQTEAiIgMigFA
RGRQDAAiIoNiABARGRQDgIjIoBgAREQGxQAgIjIoBgARkUExAIiIDIoBQERkUAwAIiKDYgAQ
ERkUA4CIyKAYAEREBsUAICIyKAYAEZFBMQCIiAzK3NkFICIyiuzcYmzel9GsbWdPHIrRg5M6
tDwMACKiEDmXW4L3Nu5u1rbxsZEdHgBsAiIiMigGABGRQTEAiIgMigFARGRQIe8EVlUVPp8P
kiTBZrNBkiQIIeD3+6GqKqxWK2RZhhACiqLA7/fDbrfDZGJWERG1p5AGgNvtxsqVKwEAPp8P
Q4cOxd13340dO3YgPT0dkiQhIiICixcvRmVlJT766CNYrVbEx8fjgQcegCzLoSwuEVGPFtIA
sNlsePzxx+FwOKAoCv7617/C5XIhKioKv/nNb2A2m7F69WoUFhZi9+7duOuuuzBy5Eh89NFH
uHDhAgYPHhzK4hIR9WghDQCTyQRJkpCdnY2jR49iwIABCA8Px+TJkyGEwJkzZ1BcXIzo6GgU
FxdjxIgRMJlMGDFiBC5fvozBgwdDURRomqY/p6Zp8Pv9oTyMDhHKYxAC8Hg87fZ8Pq+32dtq
qtqu+24pVVWava3P59PL6vP7WrCPzj3G7kpV1WZvW/e16U78SvM/54qidPgxhrwPoLS0FIcO
HcLFixf1E7+madi6dStOnz6Nhx9+GOHh4RBC6O3+VqsVlZWVAAIhErxdCAFJknpE/4BsDt1L
IQGwWCzt9nwteS6TydSu+24pk6n5zYhms1kvq7kFr09nH2N31ZLPcd3XpjtpSTO2LMsdfowh
DQAhBJKTk/Hwww/D5/Ph3Xffxfjx45Geno7c3FwsW7YMNpsNQgjYbDaUlZUhNjYWBQUFSEoK
jIir+yYRQgBo2R+1qzJJUuh2JrXv30xqSQBLUqe+XlIL/s4mk0kvq0lq/jFKnXyM3VVrX5vu
pKu9j0IaAPn5+dizZw9Gjx4Np9MJr9cLk8mE/fv349Zbb8XPP/8MAEhLS8OkSZOwfv16jB8/
HhkZGZg5c2Yoi0pE1OOFNAASEhIwcuRIXLp0CRaLBY8//jgiIyNxxx13wOfzwe12Awi0h0+e
PBlmsxlFRUV45JFHEBEREcqiEhH1eCENAFmWMWbMGIwZM6be7VOmTGl0+4kTJ4aiWEREhtT9
e0+JiKhVGABERAbFACAiMigGABGRQTEAiIgMigFARGRQDAAiIoNiABARGRQDgIjIoBgAREQG
xQAgIjIoBgARkUExAIiIDIoBQERkUAwAIiKDYgAQERkUA4CIyKAYAEREBsUAICIyKAYAEZFB
MQCIiAyKAUBEZFAMACIig2IAEBEZVJsDwOvzQwjRHmUhIqIQanMA/G3NRlzMvcwQICLqZtoc
AIXFpXhv1Trk5F5uj/IQEVGImFv7QCEEvt91AGXlFVAUFe/+/TM8s+QBpPRPgiRJ7VnGLuPM
xUIs/D8fd8hzq5rWIc9LRNSUFgfAxdzLyDhzFpVVTuw5mA5FUSGEQEVVFd75+1o89/hDPTYE
NE3A7fV3djGIiNpFiwOgtKwCW3cdgNfrhaYJCBH4NzQ1BQMH9IPT5e6IclI7Ki6rxvx/Xdmq
x/73i/fhbG4J3t2wW79NUdVmP/6H9KxW77uuvjERWPG7B/XfV31zAF/t/vmajysqq2r2Pl5+
60vYrRYAgMvra/bjPv8+HdsPn2n29hRQeKWy2du+9NeN+mvTnVQ6PZ1dhHpaHADjRg+Hpqn4
aO3/X3Py15A2ZBCeenQBwh1hHVFGameKqiHzQkGrHuvxKSivdrf68RVODyqcrXtsXZXOXvV+
L7xS1eoyNeV8fmmrHldSXo2S8up2LQvV19rXhuprVSdwUfEVxPeJgyybIEkSHrjvTp78iYi6
mRYHwOGfMlBUcgW/fXYxHnvgXjjC7LCYW92XTEREnaRFZ26/X4GiKFg47y5YLGZMGjcKCX3j
EBvT69oPJiKiLqVFAWCxmDFt0lj9d0mS0L9fYrsXioiIOh7nAiIiMigGABGRQbUpALKyspCX
l6f/fvjwYTidzjYXioiIOl6rAkAIAUVRcOTIEZw5cwY+nw9erxebNm1CYWFhe5eRiIg6QKuv
31yxYgW2b98Oi8WCNWvWQNM0REdHo1+/fu1ZPiIi6iCtDoBnnnkGI0eORExMDMaMGQNJkmCx
XHtodnl5OXJycmCxWDBkyBBYrVYIIZCdnQ2Px4O0tDRYLBYIIZCXl4fi4mIMGzYM4eHhrS0q
ERE1olVNQMGT/bRp01BWVobvvvsOW7Zswddffw2v19vk41wuF9auXYuCggJkZGTggw8+gKqq
2LZtG7Zv345Tp05h9erV0DQNGRkZ+Oyzz5Cfn4/3338fbjfnGCIiak9tGsK7ceNGZGRkYMSI
EfptV1sYJiwsDEuXLoUsy3C73XjnnXfgdDpx7NgxPP/887BarXj//fdRUlKCPXv2YOHChUhM
TITb7UZ2djbGjBnTluISEVEdbQqAsLAw3Hrrrbjllluatb0kSSguLsaBAwdw+vRpTJ8+HbIs
w+FwwG63AwDi4+NRVlYGp9OJxMRESJKEAQMGoLQ0MPmT3++HWmf2SS2E8+h7rlK7MQqvxwO/
r/kzY3YUTQi4XC79d0VROrE0RO3P7/fVe493hFYFQHZ2NrZu3YrKykqcPXsWZ87UTn27ePFi
hIU1PTGcw+HAwIED4fP5kJWVhdGjR9erNQghYDLVb5kSQujrC1gsFr2vQQgBTdMgy3JrDqPF
7DZbSPbTldnsdlis1s4uBkySBIfDof9u5nxU1MNYLNZ67/GO0KpPTVRUFEaOHAkAuP766+vd
d7WTsaZpCA8Px7hx4zBu3DisWLECLpcLHo8HTqcTYWFhyM/Px8yZMxEdHY2cnBwMHDgQ586d
w7hx41pTVCIiakKrAqBv377o27cvCgsLcfHixXr3Xbx4EampqQ2+xQNAXl4ePvvsM6SkpMDp
dMJsNqN3796YMWMG3nvvPYSHh6Nv376Ii4vD7NmzsXbtWiQmJsLlcmHw4MGtO0IiImpUm+rN
GRkZ+Oqrr5CcnAyPx4PMzEz07dsX119/PRYsWNBg++TkZCxbtgzl5eX6yd9isWDKlCkYOHAg
FEVBfHw8JEnCwIEDsWzZMlRVVSE+Ph7WLtDsQETUk7QpAHJycvDggw9iypQp8Pl8eO211/D7
3/8e//Vf/9VoAEiShMjISERGRja4PT4+vsFtMTExiImJaUsRiYioCW0KgGHDhmHdunWw2+3I
y8uDx+OBqqrNGhBGRESdq00BMG3aNLjdbqxfvx5xcXF49dVXoaoq/umf/qm9ykdERB2kVQHg
9/tx5coVREZGYvTo0Rg9erR+X1xcHPr06dNuBSQioo7RqgAoKirC2rVrMWXKFKxbt67efa+/
/nqDNn4iIup6WhUASUlJ+Jd/+RdIkoSbbrqpvctEREQh0OomoJUrV9abkgEIjMx98sknO3z0
GhERtV2rAkCWZUyYMEGfh0dRFOzcuRN79+7FkiVL2rWARETUMVo1HbQsy7j++usxceJEVFdX
Y8OGDUhISMDatWsRERHR3mUkIqIO0KoagKZp2L59O77++muMGjUKr732Gnr37q1P2EZERF1f
qwLA4/HgP//zPzFmzBjk5+djxYoV+n2//e1vuXoXEVE30KoAsNvt+PDDDxudi9/GKZOJiLqF
VgWAyWTC0KFD27ssREQUQq3qBA7yer3wdYHVoYiIqOXaFADff/891qxZc9V1gImIqGtqUwDc
cMMNOH/+PI4dOwan0wmn08kwICLqJto0G+ixY8eQm5uLN998U1+w5c033+RcQERE3UCbAmDW
rFmYOXMmXC4XrFYrhBBcuYuIqJtoUxNQSUkJXnvtNSxbtgxZWVl4/fXX2SlMRNRNtKkGsHHj
RsydOxcFBQUAgPDwcBQWFmLAgAHtUjgiIuo4baoBREREoLS0FIqioKqqCmfOnOEoYCKibqJN
NYB58+bh/fffR3p6OiRJwrx58xAbG9teZSMiog7U6gDwer04fPgwpk6diqeeego2mw0mk4kT
whERdROtng30T3/6ExRFgc/nw6FDh/DCCy+0d9mIiKgDtSoAfD4f8vLysHz5cqiqit/85jdQ
FAVmc5talIiIKIRaXQNQVRVXrlyBJElQVRX5+flwOByIjY2FydSmvmUiIgqBVs8Gajab8W//
9m/6bf/xH/8BAPjzn//MkcBERN1AqwLAZrNh+fLljc77w2//RETdQ6sCQJIkXu1DRNTNtfnr
us/nw5UrV+Dz+VBdXc3ZQImIuok2BUB+fj5eeeUVvPDCCzh16hT++Mc/wuv1tlfZiIioA7Xp
us0NGzbgqaeeQlZWFmRZRmxsLAoKCjBw4MB2Kh4REXWUNgVAUlIS0tPToWkacnNzcfLkSTz5
5JPtVTYiIsPKLSrDsTO5HbqPNgXA3Llz8dlnn+HIkSOQZRmLFy9Gr1692qtsRESG9bd/7Mff
/rG/Q/fRpgAoKirC9ddfj0cffRSapmH37t3QNA2yLLdX+YiIqIO0qRP4f//3f1FdXQ0gcGno
vn37kJvbsVUWIiJqH20KgISEBBw4cAAejwclJSW4cOECoqKi2qtszeJ0OuHxeHj5KRFRC7Wp
CeiOO+7ABx98gGeeeQYWiwWLFi1CdHR0e5WtWXbv3o3CwkLIsozw8HCEhYXB4XDoP+12OyIj
I2Gz2WC1WmGxWGC1WjmQjYgMr9WTwfn9flgsFjz99NPweDwwm82wWCztXb5r6t27N/x+P1wu
F1wuFyorK6EoSoMaQXD+omA5HQ6H/i8sLEz/FxERAZvNBrPZDFmWYTabGRZE1CO1KgAuX76M
Tz/9FJMmTcKnn35a775QTwY3adIkyLIMTdPg8/ng8/ng9Xrh9Xr1UAg2EwV/D96maRqEEA3C
QpZlWK1W/Z/dbofD4UBxpQfeiiJIsgUmswUmsxWSSQYgARIAcIoMIuo+WhUA8fHxeOqppxAe
Ho4pU6bUu8/hcLRLwVrKZDLBbrfDbrdfc1tN0+D1euHxeOB2u/WfTqezXkh4PB5UVlbqAVFQ
WglXSc4vnk2CZLbAZDJDkgP/TLIl8M9ig2QyB8JCtkCSuV4CEXUdrTojmc1mREdH48svv0Rp
aWmHDv4SQrT7t2qTyaQ3+cTExDS6z7o/g4FwMvsSPtmTC6H6oal+aIoPmqpAqAo01Qfhc119
x5IJJrMVJtkcqEXIlkB4yGaYzIGwkGQ5EBoMCyLqYG06y9x444347//+bxw+fBipqakAgOjo
6CanhFZVFbt27cLJkyfh8XgwYcIEzJ49G0ePHsXu3bsBAMOGDcPtt98Op9OJNWvWwO12Y+TI
kbjttttCNtV0MHCCPyMiIhAREYErLg22qD71thVCAEJACC3wU1NqgsEPofihaUrgp+KDpimA
pkL1uSE0J4BfXrkkAcGZViVTTW3CWluDqPkZbHoK/oPEtZiJqOXaFAAnT55EaWkp3n77bYSH
hwMA3njjjSb7ALxeL3w+HxYvXgwAWLlyJcaNG4dt27Zh6dKlsNvt+PDDD1FcXIy9e/fiuuuu
w4QJE/D3v/8deXl56N+/f1uK2yECJ2sJkn5FrQWyNazRbYXQIDQNqPkpNKWmJuGHqAkNPTjU
wG2K3wsIrbEdQ5JkSCYTYJJhMsmQzFY9MAI1jGDNwlQTEqbagCEiw2t1AAghMH78eEycOBHh
4eHNOqk4HA7ccccdEEIgOztbvy0mJgaZmZmIioqCqqpwOBy4ePEi7rnnHlgsFowZMwaXLl1C
//79oaoqNK32hBhcnjIUFEVp0+MlyQRJbl4tRggBoSoQmgqhBX5qii/Q3BQMC8UPofqg+b3Q
IABPdVM7DjQvmeRA85PJXKc2YYPJXKdJSu/Url8LClL8fqhq2/4O7UGIwFTkQZraSEgS0VW1
KgCEEFi7di02bdoESZLw0EMP4d57723WYzVNw9atW3HixAk88sgjsNvtSElJwf79+xEREYGo
qChYLBYIIfTLSsPDw1FeXq4/R92TUigXpwnlN2dJCnQuA9e+tDYYFprqh1D9+v8H+ylq71Og
+D3X2rPekS3pndcWvRnqSmkJXNXVEKoKqZOn/Kj3erBSQ9RirQoAn8+HHTt2YNWqVfB6vXj1
1Vcxd+7ca7bRCyGwadMmVFZW4oUXXoDVakV1dTVOnDiBf/7nf4YkSfj8889x8eJFmM1mVFdX
IyIiAqWlpXpnbd15hoIdxKGae6irznEUDAuTuWFY1L/Etaa/QlOhKX5oqq9eQAT/P1jLaKxT
e+f273G5pALlF07UdGoH+ilqaxTB5idrvQ7tQM2iPY8Z9cadcClSopZrVQCoqgqLxaKPvpUk
CdXV1XA4HJBluclvylVVVTh27BiWLFmij97t1asX/H4/srOzERYWhvz8fEyfPh2jR4/G5s2b
MXnyZJw4cULvN6CWqf9aBMYrSCYZJrMVQHiD7QOd2lrtT02pCYtAQAwZOhyaNR+y7WxN85QK
RXUBnsaa4YKd2iZIJlP9fgk9LGoCxBToz2CnNlHotHpN4Pz8fCxbtgwAUFBQgBdffBEmkwl/
+ctfmuwElmUZY8eOxZEjRwAEvsHdeuutWLRoEfbu3QtFUXDrrbciOTkZCQkJ+P777/HDDz/g
zjvvRGxsbCsPkVoi0Kkt12lRsUK21t4/YfIU2OIuI+rHYr1TW2hqICxqLofVFAWa4q3XFCVU
BcLvgeoTgKhobM91QqDOeAqztSYsai6fNVsgSTI0TYWqql22VkbUHbQqAOx2Oz7++ONGJ2AL
Xg3UmPDwcNx///0Nbnc4HHjggQfq3WaxWHDnnXe2pngUInqndjPGLIiapieh+gNNUHWudtI7
s4O/+9zBRzWxYxMsVb2wadMmfZR2TnYmPBWFdUIjULMIjtCuLTNrFkRBra4BhHrSN+reJCnQ
udz8sFBqguEXndmKLxAiQqCsrEy/MuvyxXNwl1xsuF+TrF/hVNs/YakzettSp2bBfgQyFg43
pS4nEBaBE3VjhBBI6NMLjz32GBRFgdPpRK5vK44XitrLZDUFQvHp4y0UrxPwNHWpaE1fRU3f
SL1Bd7KlZnyFuaaJqma0NsOCegAGAHU7wUt/g7O72u12REbHNT5KG6L+4LtGahT65bOaBk3x
QvW5mxh8Z/rFKO06I7PrBoZsDmwT7NNgWFAXxQCgHivQ3i/9YvBd45MF6lN6aCqEUGs6sJVA
YNQ0O6l1m6H0UdqBkGm482AAyLVjKWTzL8ZWBGoW9YKFfRQUQgwAItSZ0sNkAmC56vi74CWy
WnCktlq3M7v2qqdgcFxr8F1t01LNmImaZqhgbaL2SigL2KFN7YkBQNRCwUtl5WYObgsOvBNa
ICSCg/D0kNACNQ7V54baWNNT3X3Xncaj7hVPZmv9EJEtDAi6JgYAUQeTTDJkq4zGmp/0S6n1
/gq1tiZRd4LAYA1D02qm9GhiksDgYD/J9Is5nyw1a1NY9SaoQGe2HFjHgmFhSAwAok6kn3iD
k+/po7Qbqj/1eN1R2kpt01OdUdsQGjSfG6pw1gTML3duqh2lXS8srPUXMgpeIhvs12BY9BgM
AKJuouHU4/VHaddVO5WHqv9ruE5FYEGjQKe2F8LvabJTu3b9icBlsIG5nupO51E7ajvY+c6p
x7s+BgBRD6RP6dGMforaTm1/7WSAwSk91OAEgYGahep3A74mRmgH9vyLSQB/UbOoM7Ms+yk6
HwOAyODqdWo3cvVTgylfaqbyqFubqLuokVAVaMHBd401PdXd9y9GaTeYAyoYIuyn6BAMACK6
qgYnXtkMWTZDRsOV74KD7wJ9FSIQFjUjs+utTRG8EkpToam+QM2i0X6KmrEcwdHheu3B+ouw
MKPuMqkMi+ZhABBRu6lt/68ZsSCbYbLYGt22durx2lllg2Mn6o+lqL1cVvX6odSsv/2LPQM1
o64DkxTKdQbb1c4kq18uGxyhbfDBdwwAIuoUtVOPy0Cwq8LmaHTbBoPvNKXBVB6/vHwWwo2m
ZpQNNCnJdforapqfLLYGq+DVplnP69RmABBRl9fSwXfBS2NrB+EptQPwlNqxFaq36ZDQ9x3s
i6jpj6gdfGfTB91118F3DAAi6nFMV5l6/Jed2kL7ZVNT7Sp4+qWyNQsaXb1TW6rfL2GuO52H
DSZZhmSy6LWOrhAWDAAiMpRfnnivNfW4Pko72FcRHKHdYL0Kv96P0XSndp2J/0xyoJmppp+i
sU7tjh58xwAgImpCcPAdgNq+imt1amtqTVio9UZmB/sp9OnHVQWK4gNENRo2Q9VMTKjPKls7
MrvueIpg81Nw7e2WdmozAIiI2kGjg+8az4raJVI1RZ8MUF9DWx+x7aszJbkXqhdoslM7uFCR
qXYywEDtwlZv7QpJNiM4ShtgABARhVxLl0iF0OrVHuqNpdCvhlKg+V1Qr9qpLdVM5RGoPTAA
iIi6MP0KKKsM+WozykIE/qsZXBcIBm/NfE81NQqtzsSBPg8DgIioO6tt868ZgGcy1Swe1FDt
4LvATwYAEZFB1A6+C+Bq1UREBsUAICIyKAYAEZFBMQCIiAyKAUBEZFAMACIigyKVutUAABzL
SURBVGIAEBEZFAOAiMigGABERAbFACAiMigGABGRQTEAiIgMigFARGRQDAAiIoNiABARGRQD
gIjIoBgAREQGFfIVwVRVxZUrV+D3+9GnTx9YLBYIIVBdXY2ysjJEREQgJiYGAFBRUYHq6mr0
6dMHNpst1EUlIurRQhoAPp8Pn3zyCTRNg6qqsFqtePTRR5GXl4f169ejf//+8Hg8WLBgAQoL
C7Fu3TrEx8fD5/Phscceg9VqDWVxiYh6tJDXAGbOnInBgwdDCIHly5ejuroamzdvxgMPPIDk
5GQAgYWLd+zYgXnz5iE1NRVr1qzBuXPnkJaWFuriEhH1WCENAKvViiFDhkBVVXz77beIiIiA
1WpFRUUFjhw5gu+//x6jRo3C+PHjUVZWhtTUVEiShKFDh6KoqAhpaWnw+/3QNA1AICg0TQss
dBwCXq83JPvpyrweD/w+X2cXA0IIuN1u/XdFUTqxNETdU8hrAJWVlVi9ejWSkpKwaNEiKIoC
RVEwYsQIREZG4vPPP0d0dHS9x5hMJqiqGiiwubbIwQCQZTkkZWc/ROBvYLFYOrsYkCQJdrtd
/73u+4KImieknxpFUbBmzRqMHz8e06ZNg8lkgiRJcDgc6NevH8LDwzF8+HBUVVUhPDwcBQUF
SExMxKVLlzB06FAAaPBtX5KkkNUACIAkBf51AXzdidompAFQVVWFCxcuYNCgQfjuu+9gtVpx
ww03YPLkyVi9ejVGjRqFjIwMTJkyBRaLBZ9//jmGDx+OnJwc3HHHHaEsKhFRjxfSAIiIiMDj
jz+u/24ymSDLMqZPn46EhAQUFxfj0UcfRVxcHGJjYxEeHo7S0lIsWbIEDocjlEUlIurxQhoA
FosFw4cPb/S+IUOGYMiQIfrvkiQhNTUVqampoSoeEZGhcCQwEZFBMQCIiAyKAUBEZFAMACIi
g2IAEBEZFAOAiMigGABERAbFACAiMigGABGRQTEAiIgMigFARGRQDAAiIoNiABARGRQDgIjI
oBgAREQGxQAgIjIoBgARkUExAIiIDIoBQERkUAwAIiKDYgAQERkUA4CIyKAYAEREBsUAICIy
KAYAEZFBMQCIiAyKAUBEZFAMACIig2IAEBEZFAOAiMigzJ1dAKLWUFQNFy6XAgBSEmI7uTRE
3RMDgLqlwitVuOuf3wUA/PT/vdrJpSHqntgERERkUAwAIiKDYgAQERkUA4CIyKAYAEREBsUA
ICIyKEkIITq7EK0lhICmaZBlOST7O3WhAPP+dWVI9tVVmUwSIACtC71tZJMETQh0oSIRdQtd
fhyAEAKSJHV2MaiGpnW9s6zaBctE1B2ENAA0TcOPP/6IY8eOwePxYPLkyZg2bRokSYKqqli7
di1SUlJw4403wuVyYd26daioqMD48eMxY8YMmExssSIiai8hPaN6PB7k5uZi/vz5WLRoEQ4c
OACn0wkhBA4cOIDi4mIUFxcDALZu3Yr+/fvjiSeewNGjR1FQUBDKohIR9XghrQE4HA7MmzcP
AHDp0iUIIWCxWFBRUYH9+/fjrrvuwqlTp6BpGs6fP49nnnkGNpsN48aNQ05ODpKSkqCqKup2
W2iaBk3TQlJ+RVVDsh8iolAIeR+ApmnYu3cv9u3bh4ULF8JsNmPDhg2YO3cuLBaLvo2mabDZ
bACAiIgIlJeXN3guIQRC2ofNXkYi6kFCGgBCCGzZsgWXLl3Cc889h4iICOTk5OD8+fOw2Wyo
rKxESUkJUlJSIMsyXC4XHA4HysvLERkZCQD1rvgJ9VVAZnOX7zMnImq2kJ7RnE4nDh06hGXL
lsHv96O8vByJiYl4+eWXAQA5OTnIyMjAyJEjUVRUhO3bt2Pq1Kk4fvw4Hn744VAWlYioxwv5
V9pBgwZhy5YtAACr1Yq5c+eiV69eAIDExEQoigK73Y7Zs2fjH//4B9avX4+bbroJffr0CXVR
iYh6NA4EawEOBCOinoQX1hMRGRQDgIjIoBgAREQGxQAgIjIoBgARkUExAIiIDIoBQERkUAwA
IiKDYgAQERkUA4CIyKAYAEREBsUAICIyKAYAEZFBMQCIiAyKAUBEZFAMACIig2IAEBEZFAOA
iMigGABERAbFACAiMigGABGRQTEAiIgMigFARGRQDAAiIoNiABARGRQDgIjIoBgAREQGxQAg
IjIoBgARkUExAIiIDIoBQERkUAwAIiKDYgAQERkUA4CIyKDModyZEAIFBQU4fvw43G43Jk2a
hOTkZFRUVCA9PR1lZWUYMWIE0tLSoGkaDhw4gIKCAkycOBEDBw4MZVGJiHq8kNYA3G43Nm7c
iN69e6N///74/PPPUV1djQ0bNkCWZQwbNgzffPMNiouLsX//fmRnZ2PkyJH44osvUF5eHsqi
EhH1eCGtAdjtdjz55JOw2WxwuVzYtWsXAGDhwoWw2+1QFAV79uyB3+/HsWPHsGjRIkRHR+PC
hQs4e/YsJk6cGMriEhH1aCENAJPJBJvNhvz8fHz66aeYNm0aIiIiAAAVFRVYu3YtEhIS0KdP
H/h8PkRHRwMA+vbtyxoAEVE7C2kAAMDPP/+MTZs24eGHH0ZKSgoA4PLly1i5ciXuvvtujBs3
DkIISJIERVFgNpvhdrtht9tDXVQioh4t5H0AX331FZYuXaqf/FVVxYYNG7BgwQKMGzcOACBJ
EhITE3H8+HEoioKMjAz069cvlEUlIurxQloD8Hg88Hg8WLt2LQDAZrNh3rx5cDqd2LJlC777
7jsAwPz58/GrX/0Kq1atwq5du9C/f3/0798/lEUlIurxJCGE6OxCNEVVVXi9XoSFhUGSpAb3
CyGgaRpkWQ5JeU5dKMC8f10Zkn0REXW0kPcBtIQsy3A4HJ1dDCKiHqlL1wAa4/f7oWma/nuw
wzgUKqrd+P7H0yHZFxFRR+t2ASCEQHOKrKpqyJqGOkpPOIbg62Uydd9ZR3rCMQA94/3UE46h
K72funQTUGMkSbrmN34hBFRVhcViCVGpOobf74fZbA5ZDacjqKraZd7sraUoSrc/BgDw+Xw9
4jMhy3K3fi260mei80tARESdggFARGRQ3a4PoDmCh9Sdm06AnnEcPIauI5QXTHSUnvBadKVj
6JEBQERE18YmICIig2IAUKs195JcouboSe+l7vLZkP/whz/8obML0V68Xi82b96MsLAw9OrV
q9FthBD49ttv4XK5kJCQEOISBi4p3LRpE06dOoVTp04hIiKiybIWFhbim2++QWpqape7fK+q
qgpff/019u/fDyEEkpKSGt1OCIEvv/wSsiwjLi4uxKVsWm5uLrZt26a/DufPn8egQYMavTQv
eAxms7lLHQMAFBcX45tvvsGRI0cA4Krv6fT0dJw4cQKpqaldov05yOfzYevWrdi9ezcURUFS
UlKT5SspKcFXX32FAQMGwGazhbikDWmahszMTJw9exb9+vWDJElwu93YvHkzDh48iOjoaH1a
+18SQmDXrl0oLCzUHxtqPaoGsHPnTqSnp6OwsLDJba5cuYLjx49j9+7d9RJa0zR4PJ4Gqd3e
SV5cXIzCwkJMmDABEyZMQExMTKPbCSFw6NAhnD9/HqdOnap3n9/vh6IoDR5Td4R0R9I0DatW
rUJKSgruu+++JgMMAPLz83H69Gns2bOnwd/b6/V2+N+7Kb1799Zfg8TERGRmZjZ5XXZeXl6X
PAZN0/Dpp59ixIgR+NWvfoVt27bh8uXLjW4rhMCePXuQnp6OysrKerd7PJ4G753gPFuh8P33
30PTNMydOxcHDx7EmTNnmtw2PT0d58+fR0ZGRr3b/X4//H5/g+07+hg+++wz/PDDDzh+/Lh+
2+bNm2GxWDBr1ix89tlncLlcjT7W7Xbj8OHD2L17d4PZDUJxLgK64UCwpuTl5SE7OxvTp0+/
6naZmZmYPHkyzpw5g5KSEvTp0webN29GdnY2ACAiIgKPPPIItm3bhsjISBw6dAhz587F4MGD
26WchYWFSExMRFxcHMLCwq46qjE7Oxu//vWvceDAAYwfPx4A8MYbbyAiIgI+nw8333wzxo4d
i9WrVyMqKgpXrlzB448/3uHfJEpLS2E2m/W/SWpqaqPbCSHw008/4Ve/+hX27duHyspKREVF
Yf369SgqKoKqqoiPj8eCBQvw5ZdfIjk5Gfv27cODDz6IxMTEDj0Gu92OlJQUCCGwb98+3HLL
LU1++//pp59w2223Ye/evaiqqkJkZGS9Y0hISMD8+fOxceNG9O/fH/v27cNDDz0UkhqmyWRC
VFQUHA7HVdfMKCgoQEREBIYOHYrTp09jypQpyMzMxObNm2G1WiGEwMKFC1FcXIycnBxcuHAB
w4cPx6xZszq0/EII5OTk4KGHHkJ0dDRuvvlmnDx5EsOHD29029OnT+O+++7DDz/8gKlTpwIA
/ud//gd2ux0+nw833XQTJk6ciNWrVyMuLg65ubl4+umnO+wzceedd8JsNuszHGuahpycHCxb
tgxhYWFITU1FXl4ehg4d2uCxZ8+exdChQ1FWVoa8vDwMGDAAe/bswZEjRyDLMqxWKxYtWoSj
R49C0zSkp6dj9uzZuO6669qt/D2iBqCqKv7xj39gzpw5sFqtTW4nhMDJkycxevRojBo1CidO
nIAQApWVlbjjjjvw3HPPwWq1IisrCxUVFdi7dy8efPDBJk9wrSHLMi5fvozVq1fjvffeQ3Fx
caPbXb58Gb169cKQIUNQUVGB6upqCCEgyzKefvppPPLII9ixYweEEDh8+DDCwsKwaNGikFQj
r1y5gpycHGzcuBGffPIJNmzY0Og3k+AHdsSIERg8eDCysrIAAOXl5Zg/fz6effZZVFVVITc3
F2VlZTh8+DAeffTRkDbNlZSUoLCwECNHjmz0fiEEzpw5gxEjRiA1NVU/hrKyMixYsADPPvss
KioqkJeXV+8Y4uPjO7zskiRh2rRpeO+99/DOO+/AYrE0ut9giF133XUYM2YMjh8/rn/LTEtL
w7PPPoupU6diz5498Hg82LlzJ2688UbceOONITmGIUOGYNOmTTh27Bh+/vlnVFVVNbptcXEx
bDYbBg8eDI/HU68ms3TpUixZsgQ7duwAAP0YFy9e3KGfiZiYmHrP7/P5IMsywsLCAABxcXH1
yhlU9zUZP3480tPTIYRAdXU1pk+fjueeew4JCQk4ceIEqqursWPHDtx///0YPXp0u5a/R9QA
jhw5goKCApw4cQIXL16ELMtISkpqsIhMRUUFzp49i3Xr1sHj8QAAZs+eDSDwzd9kMmHgwIH6
C7ZgwYJ2PxmNGTMGY8aMgRACBw8exA8//IB58+Y12C49PR2XLl3CBx98gPz8fGRnZ2Ps2LGw
2WywWCyIjY3Vv7EOHDgQt912W8iGlttsNowdOxYPPPAAVFXF22+/jaqqKkRFRdXbrri4GBcv
XsTHH3+MyspKxMbG6us6R0ZGwmw2o1+/fnA6nQCAhx56CLGxsSE5hqCdO3di+vTpTX5xKCoq
wqVLl/DRRx+hsrIS+fn5mDBhAoDGj2HhwoVNNuu1N1VVsWPHDrzyyiuIjIzEmjVrkJWV1eDb
sxACR48ehd1uhyzLyMvLQ3V1NQAgPDwcJpMJgwYNwunTgYkOZ8+e3WQgdoSbb74Zx48fR2lp
KSIiImA2N35aOnbsGPLy8vTPRGZmJqZOnQqr1Qqr1Qqz2azXZvr164c5c+aEfN4gs9kMVVX1
OYtcLlejtVmXy4VTp06hrKwMiqKguroac+bMARB4X0mShEGDBqGgoAAAcO+993bImig9IgDS
0tL0E7WmabDZbIiNjUVhYSGioqL0ND5x4gRuv/12zJw5E0IIvPvuuygrKwMQ+JD4fD4cO3YM
99xzD3Jycq5am2itzMxMxMfHIyYmBm63GzabDYqioLCwUO/88vv9OHXqFF555RVYLBa9w3Ls
2LF6O+D58+f18lkslpDOK5KQkIDz58+joqJC/8BZrVbk5+ejd+/eerkOHz6Mhx56CBMmTICq
qlixYoV+ohRCwOVy4cyZM5g8eTIAhLxTr7y8HBcuXMC9996rl+ny5cuNHsP48eObPIasrCxM
mTIl5McghIDX64Usy5AkCbIsw+fzobKyEoqi6GFaXFyMmJgYPPnkkwCALVu2ICMjQ3/tNE3D
jz/+qH9h6oj3/dV4vV79m+3q1atxww03QFVVXL58GUlJSTCZTNA0DSdPnsRLL70Eh8OBoqIi
bNq0CVOnTtU/E7m5ufpcYWazuVMmjZNlGTExMcjIyMCwYcOQmZmJG2+8EaWlpbBarYiMjAQQ
aP6ZOHEi5s6dqx93fn4+gMA5TFVVpKenY9KkScjNze2w91WPCICoqCj922dpaSlsNhvCwsKw
bds2pKWlYciQIQACTRczZszQv2FMnToVeXl5AIC1a9fCYrFg5MiRSE5ORlxcXId9ED799FMo
ioKoqCjMnz8fPp8P3377LRYvXqx/axg0aJAeXElJSbDZbNA0DRcvXsSKFStgMplw77336stn
hpLNZsNdd92Fjz76CCaTCdOmTYPNZsPu3btx0003ITExEZqmoaqqCjfffDPMZjPMZjPGjRun
d9CvXLkSkiRh0qRJiIuLQ9++fUM+OdaZM2cwa9aseq/z7t27MXPmTCQkJEDTNFRXV+OWW27R
j2Hs2LEoKirSjwEAJk+e3CnHYDabMWfOHHz00UeQJAlJSUlIS0tDZmYmSktL9dptXl4err/+
ev19P2HCBBw5cgT9+vXDrl27cOLECfTu3Rs333wzLl68GPLLFy9fvoyvvvoKQODL3PDhw+Hz
+bBlyxY88sgjsFqt8Hq9SExM1L8d9+3bFxEREVBVFfn5+VixYgUA4Ne//jWAq18N1V7cbjc+
//xzOJ1OuN1uvPvuu7j77rtx5513Yt26dfjuu+8wbdo09OrVCzt37kRsbCzGjh0LIFCznDhx
Yr1zUbADf9OmTXA4HEhNTcXw4cNRVVWlnwvaG0cCA/j8888xY8YMJCQkhORbgxACfr8fFoul
Re2TmqZh+fLleOaZZ7rEjIh+vx9CiBYdhxACK1euxIMPPgiHw9Etp/YVQuDDDz/EwoULr9mR
HwrBJoeWvp+OHj2KiooKzJgxQ69FdBafzwcALT4GIQTefvttPPvsszCZTJ3+mQhq7Wvy7bff
IiUlBUOHDg3Ja9KjxgG0lhAC8fHxV72Koj0Fq+utfXFTUlK6xHXcsiy36jiCbbRdbWxDS/Xr
16/J9upQMplMrX4/RUZGIjY2ttPfT619LwUNGDCg04+hrta+JkIIxMXFISIiIiTHwxoAEZFB
dY36EhERhRwDgIjIoBgAREQGxQAgIjIoBgARkUExAIiIOogQXXudAwYAEXWa0tJSnDx5EqdP
n4aqqp1dnGtSFAUnT57EyZMn9WlkrqaopBSbt+2B0kWPjQPBiAhAYEqGgwcPIicnB5qmISoq
qsmRtW63G6qqtnkg3FdffYXVq1ejuroaY8eOhSRJ2L59Oy5dutTsAY+qqmLdunWIi4uD2+3G
ypUrMXnyZJhMJgghUFRUhF27duHnn39GTEwMIiIi4PV68d133+HYsWPo27cvwsPDIYTAlStX
cOjQISQnJ8NkMsHj8eC7777DkSNHEB0dDZvNhjVr1mDjxo1wOBxIS0u7atkuF5Zg7cb/hc/n
x7DUlC4zUjmo84cxElGXkJ6ejrfeekufxOyWW27B7373O30yNiGEfgJbt24dvF4vnnrqqWs+
r6Zp+skYgD5hW9CNN96Ixx9/HEBgAaE//vGPAALhEDwx130eSZLqNasIIVBYWAhVVeF0OrF7
9248++yzkGUZ1dXVeOKJJ5Camgqfz4d169Zh5cqVeP/993Hw4EH06dMHX3/9Nd577z1s3boV
K1asgMViwcSJExEeHo4//elPyM7ORt++ffXHvvzyy/rcQ9c67qMnMqCqKrbtOgChCfx6zi0w
mbrOiGUGABHp0tLS8Je//EVf1OT222+Hx+PBqlWr4HQ6cdNNN2HGjBn48ssvoSgKMjMz8cIL
L+Ctt97Cn//8Z+Tm5uLjjz/Gyy+/jNdeew2yLOPSpUuYNGkSTp8+Db/fj3//939HcnJyo/vf
t28fJkyYgJKSEvz444+YNWsW/vrXv6KgoAA5OTmYNm0annnmGWzatAmSJOHo0aO45ZZbUFVV
1WhtwWaz4U9/+hNGjBiB8+fP4/nnn0dBQQG2bNmC5cuXo3///njooYeQmZkJl8uF559/Hh99
9BEAwOPxYN++fXj33XfRv39/LF26FPv378ddd93V5N9PCIGCohKUllXg58ws7DmYDk0LzFb6
3c590DQN9999a5epCXSNUhBRl5KSkoKRI0ciOzsbUVFReOqpp/DEE0/giy++0L8hT5w4Ec88
8wx69eqFAwcOAACcTieOHz8OTdNw+PBhzJ49GzNmzMD+/fvx5JNPQgiB9PT0RvcZXCN31qxZ
mD59Onbt2gUhBDIzM5GSkoLf/e53+Oabb3D8+HHk5OTgzTffhN1ux6BBg3DkyBF9mu66rFYr
0tLScOzYMbzyyiu44YYbEBUVhcrKSgwePBhhYWHo168fCgoK8MADD9RbcCW4BvSXX36JQ4cO
QZIkfX7+pvh8fmz4+nu8v+qLeid/IQQGDkjCpfwCFJVcacMr075YAyCiBoJTYTscDhQUFGDV
qlWwWq1QFAWyLCMxMRFOpxPDhg1rcgUvAJg5cyZsNhtOnTqFyZMnIykpqcl1eouKipCZmYmw
sDB4PB6cP39eP6mPHTsW48aNw6hRo/QpxW+77Ta8+uqrV52NVQiBb7/9Fn/+85/x2GOPYcGC
BXC5XDCZTPD5fLDb7fB6vbDZbA1qEBaLBa+++iref/99ZGVl4fLly4iIiLjq381ms+KRf5qL
Dz9Zj3MXcgNNVULghslj8eD9c2DtYhMgsgZARDpFUXDlyhVs3LgRFy5c0Necnj9/Pv7whz8g
OjoaQGD2zsLCQrhcLr09vqSkBEVFRa2+7PHYsWPo3bs3pk2bhtmzZ8Pv9+sLxHs8HhQVFSEr
Kwt9+/YFEJgB9FpTcVdUVODNN9/Es88+i7lz5+on+379+mH79u3Izs5Gbm4uBgwYAJfLpR+P
0+mE3+9HTEwMXn/9dbz00kswmUwYMWLENY/DEWZHTK8ohNltEEJDYkIfPHhf1zv5A6wBEFEN
s9mM9PR03H///UhOTsbvf/97JCcnY/To0VixYgV69eqlf3ueOHEiPvnkEyxevBhvvPEGhgwZ
goULFyI8PFxfvMRqtUKSJJhMJv1qoavNj79//37cfvvtuO+++wAAGRkZetPS66+/DgC4/vrr
cd1112Hv3r31rkAKBkFwf0GFhYUoLy/HW2+9hbfffhs2mw0ffPABli5dij/+8Y8wmUy4/fbb
kZycjBdffBE5OTmorKzEkiVLsHTpUpw+fRq7d++Gx+PBPffcg1GjRl31byiEwNad++EIs+P3
/7wU7338OWTZBKu16538AU4HTUTXoGkarly5gpiYmHrfuD0eD/x+PyIiIqAoCsrLy9G7d+8W
zWMfXFEreBVQY55++mk8/PDDmDhxIhwOR7vNk+9yueD3+xEVFdXkcwYvI3U4HPpyjgCwYsUK
JCUl6SuQBV3KK8C5nFzcNG0iJElCVbUTFy7mYczIYe1S5vbGJiAiuiqTyYTevXs3aG6x2+36
Eo0WiwV9+vRp8ck5LCwM27dvx6uvvtpoJy4QWMKyT58+CA8Pb9dFUhwOB3r16nXV55QkCfHx
8frJ3+l04sUXX8TevXvhcDgabJ+cFK+f/AEgMiK8y578AdYAiKgTeb1euN1uALjqwLOuQtM0
VFZWAggESEetGx4qDAAiIoPq2nFLREQd5v8C2DUHQ+ulL+EAAAAASUVORK5CYII=
</thumbnail>
</thumbnails>
</workbook>