diff --git a/hnn_core/netpyne_model.py b/hnn_core/netpyne_model.py new file mode 100644 index 000000000..d0df7751a --- /dev/null +++ b/hnn_core/netpyne_model.py @@ -0,0 +1,242 @@ +# import itertools as it +# from copy import deepcopy +# from collections import OrderedDict + +# import numpy as np +# import warnings + +# from .drives import _drive_cell_event_times +# from .drives import _get_target_properties, _add_drives_from_params +# from .drives import _check_drive_parameter_values, _check_poisson_rates +# from .cells_default import pyramidal, basket +# from .params import _long_name, _short_name +# from .viz import plot_cells +# from .externals.mne import _validate_type, _check_option +# from .extracellular import ExtracellularArray +# from .check import _check_gids, _gid_to_type, _string_input_to_list + + +from netpyne import specs, sim + + +class NetPyne_Model(object): + """The NetPyne_Model class. + + Parameters + ---------- + params : dict + The parameters to use for constructing the network. + add_drives_from_params : bool + If True, add drives as defined in the params-dict. NB this is mainly + for backward-compatibility with HNN GUI, and will be deprecated in a + future release. Default: False + legacy_mode : bool + Set to True by default to enable matching HNN GUI output when drives + are added suitably. Will be deprecated in a future release. + + Attributes + ---------- + cell_types : dict + Dictionary containing names of real cell types in the network + (e.g. 'L2_basket') as keys and corresponding Cell instances as values. + The Cell instance associated with a given key is used as a template + for the other cells of its type in the population. + gid_ranges : dict + A dictionary of unique identifiers of each real and artificial cell + in the network. Every cell type is represented by a key read from + cell_types, followed by keys read from external_drives. The value + of each key is a range of ints, one for each cell in given category. + Examples: 'L2_basket': range(0, 270), 'evdist1': range(272, 542), etc + pos_dict : dict + Dictionary containing the coordinate positions of all cells. + Keys are 'L2_pyramidal', 'L5_pyramidal', 'L2_basket', 'L5_basket', + or any external drive name + cell_response : CellResponse + An instance of the CellResponse object. + external_drives : dict (keys: drive names) of dict (keys: parameters) + The external driving inputs to the network. Drives are added by + defining their spike-time dynamics, and their connectivity to the real + cells of the network. Event times are instantiated before simulation, + and are stored under the ``'events'``-key (list of list; first + index for trials, second for event time lists for each drive cell). + external_biases : dict of dict (bias parameters for each cell type) + The parameters of bias inputs to cell somata, e.g., tonic current clamp + connectivity : list of dict + List of dictionaries specifying each cell-cell and drive-cell + connection + rec_arrays : dict + Stores electrode position information and voltages recorded by them + for extracellular potential measurements. Multiple electrode arrays + may be defined as unique keys. The values of the dictionary are + instances of :class:`hnn_core.extracellular.ExtracellularArray`. + threshold : float + Firing threshold of all cells. + delay : float + Synaptic delay in ms. + + Notes + ----- + ``net = jones_2009_model(params)`` is the reccomended path for creating a + network. Instantiating the network as ``net = Network(params)`` will + produce a network with no cell-to-cell connections. As such, + connectivity information contained in ``params`` will be ignored. + """ + + def __init__(self, params, add_drives_from_params=False, + legacy_mode=False): + # Network parameters + netParams = specs.NetParams() # object of class NetParams to store the network parameters + + self.netParams = netParams + + ## Cell parameters/rules + PYRcell = {'secs': {}} + PYRcell['secs']['soma'] = {'geom': {}, 'mechs': {}} # soma params dict + PYRcell['secs']['soma']['geom'] = {'diam': '19 + uniform(-0.5, 0.5)', 'L': 18.8, 'Ra': 123.0} # soma geometry + PYRcell['secs']['soma']['mechs']['hh'] = {'gnabar': '0.12 + 0.001*ynorm', 'gkbar': 0.036, 'gl': 0.003, 'el': -70} # soma hh mechanism + self.netParams.cellParams['PYR'] = PYRcell + + ## Population parameters + self.netParams.popParams['S'] = {'cellType': 'PYR', 'numCells': 20} + self.netParams.popParams['M'] = {'cellType': 'PYR', 'numCells': 20} + + ## Synaptic mechanism parameters + self.netParams.synMechParams['exc'] = {'mod': 'Exp2Syn', 'tau1': 0.1, 'tau2': 5.0, 'e': 0} # excitatory synaptic mechanism + + ## Cell connectivity rules + self.netParams.connParams['S->M'] = { # S -> M label + 'preConds': {'pop': 'S'}, # conditions of presyn cells + 'postConds': {'pop': 'M'}, # conditions of postsyn cells + 'probability': 0.5, + 'weight': 0.01, # synaptic weight + 'delay': 5, + 'synMech': 'exc'} # synaptic mechanism + + + def add_evoked_drive(self): + # def add_evoked_drive(self, name, *, mu, sigma, numspikes, location, + # n_drive_cells='n_cells', cell_specific=True, + # weights_ampa=None, weights_nmda=None, + # space_constant=3., synaptic_delays=0.1, + # probability=1.0, event_seed=2, conn_seed=3): + """Add an 'evoked' external drive to the network + + # create drive cells and connect them to the real cells defined in the init function + + Parameters + ---------- + name : str + Unique name for the drive + mu : float + Mean of Gaussian event time distribution + sigma : float + Standard deviation of event time distribution + numspikes : int + Number of spikes at each target cell + location : str + Target location of synapses. Must be an element of + `Cell.sect_loc` such as 'proximal' or 'distal', which defines a + group of sections, or an existing section such as 'soma' or + 'apical_tuft' (defined in `Cell.sections` for all targeted cells). + The parameter `legacy_mode` of the `Network` must be set to `False` + to target specific sections. + n_drive_cells : int | 'n_cells' + The number of drive cells that each contribute an independently + sampled synaptic spike to the network according to the Gaussian + time distribution (mu, sigma). If n_drive_cells='n_cells' + (default) and cell_specific=True, a drive cell gets assigned to + each available simulated cell in the network with 1-to-1 + connectivity. Otherwise, drive cells are assigned with + all-to-all connectivity. If you wish to synchronize the timing of + this evoked drive across the network in a given trial with one + spike, set n_drive_cells=1 and cell_specific=False. + cell_specific : bool + Whether each artifical drive cell has 1-to-1 (True, default) or + all-to-all (False) connection parameters. Note that 1-to-1 + connectivity requires that n_drive_cells='n_cells', where 'n_cells' + denotes the number of all available cells that this drive can + target in the network. + weights_ampa : dict or None + Synaptic weights (in uS) of AMPA receptors on each targeted cell + type (dict keys). Cell types omitted from the dict are set to zero. + weights_nmda : dict or None + Synaptic weights (in uS) of NMDA receptors on each targeted cell + type (dict keys). Cell types omitted from the dict are set to zero. + synaptic_delays : dict or float + Synaptic delay (in ms) at the column origin, dispersed laterally as + a function of the space_constant. If float, applies to all target + cell types. Use dict to create delay->cell mapping. + space_constant : float + Describes lateral dispersion (from the column origin) of synaptic + weights and delays within the simulated column. The constant is + measured in the units of ``inplane_distance`` of + :class:`~hnn_core.Network`. For example, for ``space_constant=3``, + the weights are modulated by the factor + ``exp(-(x / (3 * inplane_distance)) ** 2)``, where x is the + physical distance (in um) between the connected cells in the xy + plane (delays are modulated by the inverse of this factor). + probability : dict or float (default: 1.0) + Probability of connection between any src-target pair. + Use dict to create probability->cell mapping. If float, applies to + all target cell types + event_seed : int + Optional initial seed for random number generator (default: 2). + Used to generate event times for drive cells. + Not fixed across trials (see Notes) + conn_seed : int + Optional initial seed for random number generator (default: 3). + Used to randomly remove connections when probablity < 1.0. + Fixed across trials (see Notes) + + Notes + ----- + Random seeding behavior across trials is different for event_seed + and conn_seed (n_trials > 1 in simulate_dipole(..., n_trials): + + - event_seed + Across trials, the random seed is incremented leading such that + the exact spike times are different + - conn_seed + The random seed does not change across trials. This means for + probability < 1.0, the random subset of gids targeted is the same. + """ + + # Stimulation parameters + self.netParams.stimSourceParams['bkg'] = {'type': 'NetStim', 'rate': 10, 'noise': 0.5} + self.netParams.stimTargetParams['bkg->PYR'] = {'source': 'bkg', 'conds': {'cellType': 'PYR'}, 'weight': 0.01, 'delay': 1, 'synMech': 'exc'} + + + + +def netpyne_model(params): + net = NetPyne_Model(params) + return net + +def simulate_dipole_netpyne(net, dt=0.025, tstop=170): + # code to simulate netpyne model + + # Simulation options + simConfig = specs.SimConfig() # object of class SimConfig to store simulation configuration + + simConfig.duration = tstop # Duration of the simulation, in ms + simConfig.dt = dt # Internal integration timestep to use + simConfig.verbose = False # Show detailed messages + simConfig.recordTraces = {'V_soma':{'sec':'soma','loc':0.5,'var':'v'}} # Dict with traces to record + simConfig.recordStep = 0.1 # Step size in ms to save data (eg. V traces, LFP, etc) + simConfig.filename = 'tutxxx' # Set file output name + simConfig.savePickle = False # Save params, network and sim output to pickle file + simConfig.saveJson = True + + simConfig.analysis['plotRaster'] = {'saveFig': True} # Plot a raster + simConfig.analysis['plotTraces'] = {'include': [1,2,3,4,5], 'saveFig': True} # Plot recorded traces for this list of cells + simConfig.analysis['plot2Dnet'] = {'saveFig': True} # plot 2D cell positions and connections + + sim.createSimulateAnalyze(netParams = net.netParams, simConfig = simConfig) + +# return ... + + + + + +